Chapter two

In this introductory chapter will study Course description for second course written in renewable energy department.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Contents.

1-Review of Inverse functions. inverse Trigonometric functions.
2-Derivative of inverse Trigonometric functions Hyperbolic functions.

3-Inverse Hyperbolic functions and their derivative.
4-Integrals involving Inverse Trigonometric functions.
5-Integration by parts. Trigonometric integrals.
6- Trigonometric substitution. Integrating rational functions by partial fractions.

7-Type of improper integrals and method of evaluation.
8-Sequences and their limit, monotone sequences.
9- Infinite sequence. The comparison.
10. Ratio and Root tests. Alternating series.
11. Conditional converges. Maclaurin series and taylor series. And their approximation power series.

12- Differentiating and integrating power series.
13-polar coordinates. Curves defined by parametric equations.
14-Tangent line and length for parametric and polar curves. Area in polar coordinates.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Review of Inverse functions and inverse trigonometric functions.

In every day language the term (inversion) conveys the idea of a reversal. For example in meteorology a temperature inversion is a reversal in the usual temperature proper

Definition:

The function f has inverse (denoted by f^{-1}) if is onto and one to one function and
$f^{-1}(f(x))=f\left(f^{-1}(x)\right)=x$.

Example:

Find the inverse of $y=f(x)=2 x+3$.

Solution:

Since $y=2 x+3$ is one to one and onto (check)
Then $f^{-1}(x)$ exist.

$$
x=\frac{y-3}{2} \rightarrow f^{-1}(x)=\frac{x-3}{2}
$$

$f\left(f^{-1}(x)\right)=f\left(\frac{x-3}{2}\right)=2\left(\frac{x-3}{2}\right)+3=x$
$\therefore f\left(f^{-1}(x)\right)=x$.
$f^{-1}(f(x))=x \quad$ (check)

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Example:

Find the inverse of $y=x^{2}, x \geq 0$.

Solution:

Since $y=x^{2}, x \geq 0$. is one to one and onto (check)
Then $f^{-1}(x)$ exist.

$$
x=\sqrt{y} \rightarrow f^{-1}(x)=\sqrt{x}
$$

$f\left(f^{-1}(x)\right)=f(\sqrt{x})=(\sqrt{x})^{2}=x$
$f^{-1}(f(x))=f^{-1}\left(x^{2}\right)=\sqrt{x^{2}}=x$.

Conform of each of the following.

1-The inverse of $f(x)=2 x$ is $f^{-1}(x)=\frac{1}{2} x .($ cheak $)$
2-The inverse of $f(x)=x^{3}$ is $f^{-1}(x)=x^{\frac{1}{3}}$. (cheak)

Inverse Trigonometric functions

A common problem in trigonometry is to find an angle whose trigonometric functions are known.

properties:

$1-\csc x=\frac{1}{\sin x}$
$2-\sec x=\frac{1}{\cos x}$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$3-\tan x=\frac{\sin x}{\cos x}$
$4-\cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$
$5-\sec ^{2} x-\tan ^{2} x=1$
$6-\csc ^{2} x-\cot ^{2} x=1$
$7-\tan x \cot x=1$

Theorem:

$1-\sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)$

Proof (1):

$$
\begin{gathered}
\text { Let } y=\sec ^{-1}(x) \\
\sec y=\sec \sec ^{-1}(x) \\
\leftrightarrow x=\sec y \\
\leftrightarrow x=\frac{1}{\cos y} \\
\leftrightarrow \cos y=\frac{1}{x} \\
\cos ^{-1} \cos y=\cos ^{-1} \frac{1}{x} \\
\leftrightarrow y=\cos ^{-1}\left(\frac{1}{x}\right)
\end{gathered}
$$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji
$\sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)$
$2-\csc ^{-1}(x)=\sin ^{-1}\left(\frac{1}{x}\right)(\operatorname{check})$
$3-\sin ^{-1}(x)+\cos ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$

Proof (3):

$$
\begin{gathered}
\text { Let } y=\sin ^{-1}(x) \\
\sin y=\sin \sin ^{-1}(x) \\
\leftrightarrow x=\sin y \\
\leftrightarrow x=\cos \left(\frac{\pi}{2}-y\right) \\
\cos ^{-1}(x)=\cos ^{-1} \cos \left(\frac{\pi}{2}-y\right) \\
\cos ^{-1}(x)=\frac{\pi}{2}-y \\
\leftrightarrow \cos ^{-1}(x)+y=\frac{\pi}{2} \\
\leftrightarrow \cos ^{-1}(x)+\sin ^{-1}(x)=\frac{\pi}{2} \\
4-\cos ^{-1}(-x)= \\
5-\sec ^{-1}(-x)= \\
\hline
\end{gathered}
$$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Proof (5):

$$
\begin{gathered}
\text { Let } y=\sec ^{-1}(-x) \\
\sec y=\sec \sec ^{-1}(-x) \\
\sec (y)=-x \\
\leftrightarrow x=-\sec (y) \\
\leftrightarrow-x=-\sec (\pi-y) \\
\sec ^{-1}(-x)=-\sec ^{-1} \sec ^{(}(\pi-y) \\
\sec ^{-1}(-x)=\pi-y \\
\leftrightarrow \sec ^{-1}(-x)=\pi-\sec ^{-1}(x)
\end{gathered}
$$

$$
6-\sin \left(\sin ^{-1}(x)\right)=x \quad-1 \leq x \leq 1
$$

$$
7-\sin ^{-1}(\sin (x))=x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

$8-\tan ^{-1}(x)+\cot ^{-1}(x)=\frac{\pi}{2}$

Example:

Find the domain and Rang of $\sin ^{-1}(x)$ and sketch

Solution:

$f(x)=\sin ^{-1}(x) \leftrightarrow x=\sin y$
$f(x)=\sin ^{-1}(x)$ is one to one on $\frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
\begin{aligned}
& D_{f}=-1 \leq x \leq 1 \\
& R_{f}=\frac{-\pi}{2} \leq y \leq \frac{\pi}{2} \\
& \sin ^{-1}(0)=0 \\
& \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \\
& \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4} \\
& \sin ^{-1}\left(\sqrt{\frac{3}{2}}\right)=\frac{\pi}{3}
\end{aligned}
$$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Properties:

$1-\sin \left(\sin ^{-1} x\right)=x$

Remark:

$$
f(x)=\sin ^{-1}(-x)=-\sin ^{-1}(x)
$$

Proof:

$$
\begin{gathered}
y=\sin ^{-1}(-x) \\
\sin y=\sin \quad \sin ^{-1}(-x) \\
\leftrightarrow-x=\sin y \\
\leftrightarrow x=-\sin y \\
\leftrightarrow x=\sin (-y) \\
\\
\sin ^{-1}(x)=-y \\
y=-\sin ^{-1}(x) \\
\therefore \quad \sin ^{-1}(-x)=-\sin ^{-1}(x)
\end{gathered}
$$

Example:

Find the domain and Rang of $\cos ^{-1}(x)$ and sketch

Solution:

$$
\begin{aligned}
& f(x)=\cos ^{-1}(x) \leftrightarrow x=\cos y \\
& f(x)=\cos ^{-1}(x) \text { is one to one on }[0, \pi] \\
& D_{f}=-1 \leq x \leq 1
\end{aligned}
$$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji
$R_{f}=0 \leq y \leq \pi$.

* $\sin ^{-1} \frac{1}{x}=\cos ^{-1} x$
$* \cos \left(\cos ^{-1} x\right)=x$

$* \cos ^{-1} \frac{1}{x}=\sec ^{-1} x$

Example:

Find the domain and Rang of $\tan ^{-1}(x)$ and sketch

Solution:

$f(x)=\tan ^{-1}(x) \leftrightarrow x=$ tan y
$f(x)=\tan ^{-1}(x)$ is one to one on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
\begin{aligned}
& D_{f}=-\infty \leq x \leq \infty . \\
& R_{f}=\frac{-\pi}{2} \leq y \leq \frac{\pi}{2} .
\end{aligned}
$$

Remark:

$f(x)=\tan ^{-1}(-x) \leftrightarrow-\tan ^{-1}(x)$

Proof:

$$
\begin{aligned}
& y=\tan ^{-1}(-x) \\
& \tan \quad y=\tan \quad \tan ^{-1}(-x) \\
& \leftrightarrow-x=\tan y \\
& \leftrightarrow x=-\tan y \\
& \leftrightarrow x=\tan (-y)
\end{aligned}
$$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji
$\leftrightarrow \tan ^{-1}(x)=-y$
$\therefore-\tan ^{-1}(x)=-\tan ^{-1}(-x)$

Remark:

$\tan ^{-1} \frac{1}{x}=\cot ^{-1} x$

Example:

Find the domain and Rang of $\cot ^{-1}(x)$ and sketch

Solution:

$f(x)=\tan ^{-1}(x) \leftrightarrow x=\cot y$
$f(x)=\cot ^{-1}(x)$ is one to one on $(0, \pi)$
$D_{f}=R$ or $-\infty \leq x \leq \infty$.
$R_{f}=(0, \pi)$.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Example:

Find the domain and Rang of $\sec ^{-1}(x)$ and sketch

Solution:

$f(x)=\sec ^{-1}(x) \leftrightarrow x=\sec y$
$f(x)=\sec ^{-1}(x)$ is one to one on $[0, \pi]$
$D_{f}=\{x: x \geq 1\} \cup\{x: x \leq-1\}$
$R_{f}=\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] / \frac{\pi}{2}$.

Example:

Find the domain and Rang of $\csc ^{-1}(x)$ and and sketch

Solution:

$f(x)=\csc ^{-1}(x) \leftrightarrow x=\csc y$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
\begin{aligned}
& f(x)=\csc ^{-1}(x) \text { is one to one on }\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] /\{0\} \\
& D_{f}=\{x: x \geq 1\} \cup\{x: x \leq-1\} \\
& R_{f}=\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] /\{0\}
\end{aligned}
$$

Derivative of inverse Trigonometric functions.

Here we will use implicit differentiation to obtain the derivative formula for $y=\sin ^{-1} u, \cos ^{-1} u, \tan ^{-1} u$, $\cot ^{-1} u \sec ^{-1} u$ and $\csc ^{-1} u$.

$$
\begin{aligned}
1-\frac{d}{d u} \sin ^{-1} u & =\frac{d u}{\sqrt{1-u^{2}}} \\
2-\frac{d}{d u} \cos ^{-1} u & =\frac{-d u}{\sqrt{1-u^{2}}}
\end{aligned} \quad(-1<u<1) .
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\left.\begin{aligned}
3-\frac{d}{d u} \tan ^{-1} u & =\frac{d u}{1+u^{2}} \\
4-\frac{d}{d u} \cot ^{-1} u & =\frac{-d u}{1+u^{2}} \\
5-\frac{d}{d u} \sec ^{-1} u & =\frac{d u}{|u| \sqrt{u^{2}-1}} \\
6-\frac{d}{d u} \csc ^{-1} u & =\frac{-d u}{|u| \sqrt{u^{2}-1}}
\end{aligned} \right\rvert\, u 1 .
$$

Example:

find $\frac{d y}{d x}$ for the function $y=\sin ^{-1}(x)$

Solution:

$$
\begin{aligned}
& B y \quad \frac{d}{d u} \sin ^{-1} u=\frac{d u}{\sqrt{1-u^{2}}} \quad(-1<u<1) \\
& \frac{d y}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Example:

find $\frac{d y}{d x}$ for the function $y=\sin ^{-1} \frac{1}{x^{3}}$.

Solution:

Ву $\frac{d}{d u} \sin ^{-1} u=\frac{d u}{\sqrt{1-u^{2}}} \quad-1<u<1$.
$\frac{d y}{d x} \sin ^{-1} x^{-3}=\frac{-3 x^{-4}}{\sqrt{1-\left(x^{-3}\right)^{2}}}$

Example:

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
if $y=\cos ^{-1} \sec x \quad$ find $\frac{d y}{d x}$

Solution:

By: $\frac{d}{d u} \cos ^{-1} u=\frac{-d u}{\sqrt{1-u^{2}}}$
$\frac{d}{d u} \cos ^{-1} \sec x=\frac{-\sec x \tan x}{\sqrt{1-(\sec x)^{2}}}$

Example:

find $\frac{d y}{d x}$ if $y=\cos ^{-1}\left(\frac{1}{x}\right)$
Solution:
$\frac{d y}{d x} \cos ^{-1}\left(\frac{1}{x}\right)=\frac{-}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}}\left(\frac{1}{x^{2}}\right)$

Example:

find $\frac{d y}{d x}$ if $y=\tan ^{-1} \csc x$

Solution:

By: $\frac{d}{d u} \tan ^{-1} u=\frac{d u}{1+u^{2}}$
$\frac{d y}{d x} \tan ^{-1} \csc x=\frac{-\csc x \cot x}{1+(\csc x)^{2}}$

Example:

find $\frac{d y}{d x}$ if $y=\cot ^{-1}(x+1)$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

Solution:

By: $\frac{d}{d u} \cot ^{-1} u=\frac{-d u}{1+u^{2}}$

$$
\frac{d y}{d x} \cot ^{-1}(x+1)=\frac{-1}{1+(x+1)^{2}}
$$

Example:

find $\frac{d y}{d x}$ if $y=\cot ^{-1} x^{2} \quad \cos x$

Solution:

By: $\frac{d}{d u} \cot ^{-1} u=\frac{-d u}{1+u^{2}}$
$\frac{d y}{d x} \cot ^{-1} x^{2} \quad \cos x=\cot ^{-1} x^{2}(-\sin x)+\cos x \frac{-2 x}{1+\left(x^{2}\right)^{2}}$

Example:

find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left(e^{\tan x}\right)$
Solution:
By: $\frac{d}{d u} \sec ^{-1} u=\frac{d u}{|u| \sqrt{u^{2}-1}} \quad|u|>1$.
$\frac{d y}{d x} \sec ^{-1}\left(e^{\tan x}\right)=\frac{(\sec x)^{2} e^{\tan x}}{\left|e^{\tan x}\right| \sqrt{\left(e^{\tan x}\right)^{2}-1}}$
Example:
find $\frac{d y}{d x}$ if $y=\csc ^{-1}(\csc x)$
Solution:

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

By: $\quad \frac{d}{d u} \csc ^{-1} u=\frac{-d u}{|u| \sqrt{u^{2}-1}} \quad|u|>1$.
$\frac{d y}{d x} \csc ^{-1}(\csc x)=\frac{\csc x \cot x}{|\csc x| \sqrt{(\csc x)^{2}-1}}$

Example:

find $\frac{d y}{d x}$ if $y=\sin \left(\tan ^{-1} x^{3}\right)$

Solution:

$$
\frac{d y}{d x} \sin \left(\tan ^{-1} x^{3}\right)=\cos \left(\tan ^{-1} x^{3}\right) \cdot \frac{3 x^{2}}{1+\left(x^{3}\right)^{2}}
$$

Exercise:

$1-y=\sin ^{-1}\left(x^{3}-\frac{1}{x}\right) \quad$ find $\frac{d y}{d x}$
2-find $\frac{d y}{d x}$ if $y=\left[\cos ^{-1}\left(2 x^{2}+3\right)\right]^{3}$
3-find $\frac{d y}{d x}$ if $y=\tan ^{-1}(\sin x+\cos x)$
4-find $\frac{d y}{d x}$ if $y=\sec ^{-1}(x \sqrt{\cos x})$
$5-$ find $\frac{d y}{d x}$ if $y=\sec \left(\tan ^{-1} \frac{1}{x}\right)$
$6-$ find $\frac{d y}{d x}$ if $y=\cot \left(\tan ^{-1} \sqrt{x}\right)$
$7-$ find $\frac{d y}{d x}$ if $y=\tan \left(\tan ^{-1} 2 x\right)$

2-Hyperbolic functions

In this section we will study certain combination of e^{x} and e^{-x} called hyperbolic functions these functions which arise in various engineering applications have many properties in common with the trigonometric functions.

Definition:

Hyperbolic sine is $\rightarrow \sinh x=\frac{e^{x}-e^{-x}}{2}$
Hyperbolic cosine is $\rightarrow \cosh x=\frac{e^{x}+e^{-x}}{2}$
Hyperbolic tangent is $\rightarrow \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Hyperbolic cotangent is $\rightarrow \operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
Hyperbolic secant is $\rightarrow \operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$
Hyperbolic cosecant is $\rightarrow \operatorname{csch} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$

The Calculus in Renewable Energy Department

Dr. Thamer AL-khafaji

Example:

Find $\sinh \mathrm{x}$ if $\mathrm{x}=0$.
Solution.
$\sinh 0=\frac{e^{x}-e^{-x}}{2}=\frac{e^{0}-e^{-0}}{2}=\frac{1-1}{2}=0$.

Example:

Find $\cosh \mathrm{x}$ if $\mathrm{x}=0$.
Solution:
$\cosh 0=\frac{e^{x}+e^{-x}}{2}=\frac{e^{0}+e^{-0}}{2}=\frac{1+1}{2}=1$.

Example:

Find $\sinh \mathrm{x}$ if $\mathrm{x}=2$.
Solution:
$\sinh 2=\frac{e^{2}-e^{-2}}{2} \approx 3.6269$.

Example:

Find the Hyperbolic secant where the angle is π Solution:

Hyperbolic secant is $\rightarrow \operatorname{sech} \pi=\frac{1}{\cosh \pi}=\frac{2}{e^{\pi}+e^{-\pi}}$

3-Derivative Hyperbolic functions

The derivative formulas for Hyperbolic functions can be obtain by expressing.

Theorem.

$1-\frac{d}{d x} \sinh x=\cosh u \frac{d u}{d x}$
$2-\frac{d}{d x} \cosh u=\sinh u \frac{d u}{d x}$
$3-\frac{d}{d x} \tanh u=\operatorname{sech}^{2} u \frac{d u}{d x}$
$4-\frac{d}{d x} \operatorname{coth} u=-\operatorname{csch}^{2} u \frac{d u}{d x}$
$5-\frac{d}{d x} \operatorname{sech} u=-\operatorname{sech} u \tanh u \frac{d u}{d x}$
$6-\frac{d}{d x} \operatorname{csch} u=-\operatorname{csch} u \operatorname{coth} u \frac{d u}{d x}$

Remark:

$\cosh ^{2} x-\sinh ^{2} x=1$

Example:

Derivative formula tanhx can be obtained by formulas for Hyperbolic functions

Solution.

$$
\begin{aligned}
& \frac{d}{d x} \tanh x=\frac{d}{d x} \frac{\sinh x}{\cosh x} \\
&=\frac{\cosh x \frac{d}{d x} \sinh x-\sinh x \frac{d}{d x} \cosh x}{\cosh ^{2} x} \\
& \frac{\cosh ^{2} x-\sinh ^{2} x}{\cosh ^{2} x}=\frac{1}{\cosh ^{2} x}=\operatorname{sech}^{2} x
\end{aligned}
$$

Example:

Derivative formula $\cosh x^{3}$

Solution.

$$
\frac{d}{d x} \cosh x^{3}=3 x^{2} \sinh x^{3}
$$

Example:

Derivative formula sinhx can be obtained by expressing these functions in terms of e^{x} and e^{-x}.

Solution.

$$
\frac{d}{d x} \sinh x=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{2}\right)=\frac{e^{x}+e^{-x}}{2}=\cosh x
$$

Example:

Derivative formula coshx can be obtained by expressing these functions in terms of e^{x} and e^{-x}

Solution:

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
\frac{d}{d x} \cosh x=\frac{d}{d x}\left(\frac{e^{x}+e^{-x}}{2}\right)=\frac{e^{x}-e^{-x}}{2}=\sinh x
$$

Exercise:

Derivative formula for $\operatorname{coth} x$ can be obtained by expressing these functions in terms of e^{x} and e^{-x}

Exercise:

Find the derivative formula for the functions.
$1-y=\ln \tanh x$
$2-y=\operatorname{sech} e^{3 x}$
$4-\mathrm{y}=\frac{\tanh \mathrm{x}}{\operatorname{sech} 30}$

3-Inverse Hyperbolic functions and their derivative

The following theorems list the generalized derivative formula for the Inverse Hyperbolic functions.

Theorems.
$1-\frac{d}{d x} \sinh ^{-1} u=\frac{1}{\sqrt[2]{1+u^{2}}} \frac{d u}{d x}$
$2-\frac{d}{d x} \cosh ^{-1} u=\frac{1}{\sqrt[2]{u^{2}-1}} \frac{d u}{d x} . \quad u>1$.

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$3-\frac{d}{d x} \tan h^{-1} u=\frac{1}{1-u^{2}} \frac{d u}{d x} . \quad|u|<1$.
$4-\frac{d}{d x} \operatorname{coth}^{-1} u=\frac{1}{1-u^{2}} \frac{d u}{d x} . \quad|u|>1$.
$5-\frac{d}{d x} \operatorname{sech}^{-1} u=-\frac{1}{u \sqrt[2]{1-u^{2}}} \frac{d u}{d x} . \quad 0<u<1$.
$6-\frac{d}{d x} \operatorname{csch}^{-1} u=-\frac{1}{|u|^{2} \sqrt{1+u^{2}}} \frac{d u}{d x} . \quad u \neq 0$.

Example:

Find the derivative formula for $\tanh ^{-1} x^{2}$

Solution:

$B y: \frac{d}{d x} \tan h^{-1} u=\frac{1}{1-u^{2}} \frac{d u}{d x} . \quad|u|<1$.
$\frac{d}{d x} \tan ^{-1} x^{2}=\frac{2 x}{1-\left(x^{2}\right)^{2}}$.
Example:
Find the derivative formula for $\operatorname{csch}^{-1} \frac{1}{x}$

Solution:

$B y: \frac{d}{d x} \operatorname{csch}^{-1} u=-\frac{1}{|u|^{2} \sqrt{1+u^{2}}} \frac{d u}{d x} . \quad u \neq 0$.

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\frac{d}{d x} \operatorname{csch}^{-1} \frac{1}{x}=-\frac{\frac{-1}{x^{2}}}{\left|\frac{1}{x}\right|^{2} \sqrt{1+\left(\frac{1}{x}\right)^{2}}}
$$

Example:

Find the derivative formula for $\cot ^{-1} \cos x$

Solution:

$B y: \frac{d}{d x} \operatorname{coth}^{-1} u=\frac{1}{1-u^{2}} \frac{d u}{d x} . \quad|u|>1$.
$\frac{d}{d x} \operatorname{coth}^{-1} \cos x=\frac{-\sin x}{1-(\cos x)^{2}}$

Exercise:

Find the derivative formula for the functions.
$1-\mathrm{y}=\tan h^{-1}\left(\frac{2}{3+x}\right)$
$2-\mathrm{y}=\operatorname{csch}^{-1} \sec x^{3}$
$3-y=\cosh ^{-1} \tan x$

4-Integration involving inverse trigonometric functions.

Let $F(x)$ and $f(x)$ be two functions related as

$$
\frac{\mathrm{d}}{d x} F(x)=f(x)
$$

Then $f(x)$ is called the derivative of $F(x)$
$f(x)$ is called an infinite integral of $F(x)$ and denoted by

$$
\begin{gathered}
f(x)=\int F(x) d x \\
\int u^{n} \frac{d u}{d x}=\frac{u^{n+1}}{n+1}+c
\end{gathered}
$$

Remark:

$$
\frac{d}{d x} x^{2}=2 x . \quad \rightarrow \int 2 x d x=x^{2}+c
$$

But

$$
\frac{d}{d x}\left(x^{2}+3\right)=2 x . \quad \rightarrow \int 2 x d x=x^{2}+c
$$

C is called a constant of integration.

Example:

Find $\int \frac{1}{5} x^{3} d x$

Solution.

$$
\int \frac{1}{5} x^{3} d x=\frac{1}{5} \int x^{3} d x=\frac{1}{5} \frac{x^{4}}{4}+c=\frac{x^{4}}{20}+c
$$

Example:

Find $\int \frac{1}{5} x^{-3} d x$

Solution.

$\int \frac{1}{5} x^{-3} d x=\frac{1}{5} \int x^{-3} d x=\frac{x^{-2}}{-10}+c$
Example:
Find $\int\left(\frac{1}{4 x^{4}}+2\right) d x$
Solution.

$$
\begin{aligned}
\int\left(\frac{1}{4 x^{4}}+2\right) d x & =\int \frac{1}{4 x^{4}} d x+\int 2 d x \\
& =\int \frac{x^{-4}}{4} d x+\int 2 d x \\
& =\frac{1}{4} \int x^{-4} d x+\int 2 d x \\
& =\frac{x^{-3}}{-12}+2 x+c
\end{aligned}
$$

Example:

Find $\int\left(x^{2}+2\right)^{2} d x$
Solution.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
\begin{aligned}
\int\left(x^{2}+2\right)^{2} d x & =\int\left(x^{4}+4 x^{2}+4\right) d x \\
& =\frac{x^{5}}{5}+\frac{4 x^{3}}{3}+4 x+c
\end{aligned}
$$

Example:

Find $\int\left(x^{2}+2\right)^{2} \quad 2 x d x$
Solution.

$$
\int\left(x^{2}+2\right)^{2} \quad 2 x d x=\frac{\left(x^{2}+2\right)^{3}}{3}+c
$$

5- Trigonometric Integrals

We will discuss methods for integrating other kinds of integrals that involve Trigonometric Integrals.

Theorems:

$1-\int \sin u \frac{d u}{d x} d x=-\cos u+c$
$2-\int \cos u \frac{d u}{d x} d x=\sin u+c$
$3-\int \sec ^{2} u \frac{d u}{d x} d x=\tan u+c$
$4-\int \csc ^{2} u \frac{d u}{d x} d x=-\cot u+c$
$5-\int \sec u \operatorname{tanu} \frac{d u}{d x} d x=\sec u+c$
$6-\int \csc u \cot u \frac{d u}{d x} d x=-\csc u+c$

Example:

Evaluate $\int \sin \frac{1}{2} x d x$

Solution:

$\int \sin \frac{1}{2} x d x$
$2 \int \frac{1}{2} \sin \frac{1}{2} x d x=-2 \cos \frac{1}{2} x+c$

Example:

Evaluate $\int x^{2} e^{x^{3}} \cos e^{x^{3}} d x$

Solution.

$\frac{1}{3} \int 3 x^{2} e^{x^{3}} \cos e^{x^{3}} d x=\frac{1}{3} \sin e^{x^{3}}+c$

Exercise:

Find the integral formula for the functions.
$1-\int \frac{1}{x^{3}} \csc x^{-2} \cot x^{-2} d x$
$2-\int \cos x \csc ^{2} \sin x d x$

Integration involving Exponential

$\int e^{u} d u=e^{u}+\boldsymbol{c}$.

Example:

Find $\int e^{2 x} 2 d x$

Solution.

$\int e^{2 x} 2 d x=e^{2 x}+c$

Example:

Find $\int e^{\cos x} \sin x d x$

Solution.

$-\int e^{\cos x}(-\sin x) d x=-e^{\cos x}+c$

Exercise:

Find the integral formula for the functions.
$1-\int e^{e^{x}} e^{x} d x$
$1-\int e^{\left(x^{2}+4 x\right)^{2}}\left(x^{2}+4 x\right)^{2}(2 x+4) d x$

Integration involving logarithm

$\int \frac{1}{u} d u=\ln |u|+c$.

Example:

Find $\int \frac{x^{2}}{x^{3}+10} d x$

Solution.

$\frac{1}{3} \int \frac{3 x^{2}}{x^{3}+10} d x=\frac{1}{3} \operatorname{Ln}\left|x^{3}+10\right|+c$
Example:
Find $\int \tan x d x$
Solution.
$\int \tan x d x=-\int \frac{-\sin x}{\cos x} \quad d x=-\operatorname{Ln}|\cos x|+c$
Example:
Find $\int e^{\ln \sec x} d x$
Solution.
Find $\int e^{\ln \sec x \tan x} \quad d x=\int \sec x \tan x d x=\sec x+c$
Example:

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Find $\int \operatorname{Ln} e^{x^{-3}} d x$

Solution.

$\int \operatorname{Ln} e^{x^{-3}} d x=\int x^{-3} d x=\frac{x^{-2}}{-2}+c$
Example:
find $\int \frac{3 x^{2}}{\left(x^{3}+10\right)^{5}} d x$
Solution.
$\int \frac{3 x^{2}}{\left(x^{3}+10\right)^{5}} d x=\int 3 x^{2}\left(x^{3}+10\right)^{-5} d x=\frac{\left(x^{3}+10\right)^{-4}}{-4}$

Exercise:

Find the integral formula for the functions.
$1-\int \frac{\cos x}{e^{\cos x}} d x$
$2-\int \frac{x^{3}}{x^{4}} d x$
$3-\int 0 d x$

Integration inverse trigonometric functions.

We will derive some related integration formulas that involve Inverse Trigonometric functions.

Theorem.

$$
\begin{aligned}
& 1-\int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1} u+c \\
& 2-\int \frac{-d u}{\sqrt{1-u^{2}}}=\cos ^{-1} u+c \\
& 3-\int \frac{d u}{1+u^{2}}=\tan ^{-1} u+c \\
& 4-\int \frac{-d u}{1+u^{2}}=\cot ^{-1} u+c \\
& 5-\int \frac{d u}{u \sqrt{u^{2}-1}}=\sec ^{-1}|u|+c \\
& 6-\int \frac{-d u}{u \sqrt{u^{2}-1}}=\csc ^{-1} u+c
\end{aligned}
$$

Example:

Evaluate $\int \frac{d x}{1+25 x^{2}}$
Solution.

$$
B y: \int \frac{d u}{1+u^{2}}=\tan ^{-1} u+c
$$

substituting
$u=5 x, \quad d u=5 d x$.
yields

$$
\int \frac{d x}{1+25 x^{2}}=\frac{1}{5} \int \frac{5 d x}{1+(5 x)^{2}}=\frac{1}{5} \tan ^{-1}(5 x)+c
$$

Example:

Evaluate $\int \frac{d y}{y \sqrt{49 y^{2}-1}}$
Solution.
$B y: \int \frac{d u}{u \sqrt{u^{2}-1}}=\sec ^{-1}|u|+c$
substituting
$u=7 y, \quad d u=7 d y$.
yields
$\int \frac{d y}{y \sqrt{49 y^{2}-1}}=\frac{1}{7} \int \frac{7 d y}{y \sqrt{(7 y)^{2}-1}}=\frac{1}{7} \sec ^{-1}(7 y)+c$

Example:

Evaluate $\int \frac{-d x}{1+3 x^{2}}=$
Solution.

$$
B y: \int \frac{d u}{1+u^{2}}=\cot ^{-1} u+c
$$

substituting

$$
u=\sqrt{3} x, \quad d u=\sqrt{3} d x
$$

yields

$$
\int \frac{-d x}{1+3 x^{2}}=\frac{\mathbf{1}}{\sqrt{3}} \int \frac{-\sqrt{3} d x}{1+(\sqrt{3} x)^{2}}=\frac{\mathbf{1}}{\sqrt{3}} \cot ^{-1} \sqrt{3} x+c
$$

Example:

Evaluate $\int \frac{e^{x} d x}{\sqrt{1-e^{2 x}}}$
Solution.
$B y \int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1} u+c$
substituting

$$
u=\boldsymbol{e}^{x}, \quad d u=\boldsymbol{e}^{x} d x
$$

yields
$\int \frac{e^{x} d x}{\sqrt{1-e^{2 x}}}=\int \frac{e^{x} d x}{\sqrt{1-\left(e^{x}\right)^{2}}}=\sin ^{-1}\left(e^{x}\right)+c$.

Exercise:

Find the integral formula for the functions.

$$
\begin{aligned}
& 1-\int \frac{-\cos x}{\sqrt{1-\sin ^{2} x}} d x \\
& 2-\int \frac{-1}{\sqrt{1-\left(\frac{1}{5} x\right)^{2}}} d x
\end{aligned}
$$

$$
\begin{aligned}
& 3-\int \frac{\frac{1}{x}}{1+\ln x^{2}} d x \\
& 4-\int \frac{-z^{\frac{-2}{3}}}{1+z^{\frac{2}{3}}} d z \\
& 5-\int \frac{x}{x^{2} \sqrt{x^{4}-1}} d x \\
& 6-\int \frac{-1}{3 y \sqrt{9 y^{2}-1}} d y
\end{aligned}
$$

Integration by parts

In this section we will discuss an integration technique that is essentially an anti derivative formulation of the formula for differentiating a product of two functions.

Definition:

The integration $d v$ is the product of the algebraic u function.

$$
\int u d v=u v-\int v d u
$$

Where.
$u \rightarrow d u$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\int d v=v
$$

Example:

Evaluate $\int x e^{x} d x$.

Solution.

$u=\mathrm{x} \rightarrow d u=1 . d x$
$d v=e^{x} d x \rightarrow \int d v=\int e^{x} d x \rightarrow v=e^{x}$
$B y: \int u d v=u v-\int v d u$
$\int x e^{x} d x=x e^{x}-\int e^{x} d x$
$\int x e^{x} d x=x e^{x}-e^{x}+c$.

Example:

Evaluate $\int x \sin x d x$.

Solution.

$u=\mathrm{x} \rightarrow d u=1 . d x$
$d v=\sin x d x \rightarrow \int d v=\int \sin x d x \rightarrow v=-\cos x$
$B y: \int u d v=u v-\int v d u$
$\int x \sin x d x=x \cos x-\int-\cos x d x$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\int x \sin x d x=x \cos x+\sin x+c
$$

Example:

Evaluate $\int x^{2} \sin x d x$.

Solution.

$u=x^{2} \rightarrow d u=2 x d x$
$d v=\sin x d x \rightarrow \int d v=\int \sin x d x \rightarrow v=-\cos x$
$\mathrm{By}: \int u d v=u v-\int v d u$

$$
\begin{aligned}
& \int x^{2} \sin x d x=-x^{2} \cos x+\int 2 x \cos x d x \\
& \int 2 x \cos x d x=? \\
& u=2 x \rightarrow d u=2 d x
\end{aligned}
$$

$$
d v=\cos x d x \rightarrow \int d v=\int \cos x d x \rightarrow v=\sin x
$$

Now:

$$
\begin{aligned}
& \int 2 x \cos x d x=u v-\int v d u \\
& \int 2 x \cos x d x=-2 x \sin x-2 \int \sin x d x \\
& \int 2 x \cos x d x=-2 x \sin x+2 \cos x+c
\end{aligned}
$$

By *

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\begin{aligned}
& \int x^{2} \sin x d x=x^{2} \cos x+\int 2 x \cos x d x \\
& \int x^{2} \sin x d x=x^{2} \cos x+(-2 x \sin x+2 \cos x+c) \\
& \int x^{2} \sin x d x=x^{2} \cos x-2 x \sin x+2 \cos x+c
\end{aligned}
$$

Example:

Evaluate $\int \ln x d x$

Solution.

$u=\ln x \rightarrow d u=\frac{1}{x} d x$
$d v=d x \rightarrow \int d v=\int d x \rightarrow v=x$
By: $\int u d v=u v-\int v d u$
$\int \ln x d x=x \ln x-\int x \frac{1}{x} d x$
$\int \ln x d x=x \ln x-\int d x$
$\int \ln x d x=x \ln x-x+c$

Example:

Evaluate $\int x \csc ^{2} x d x$
Solution.
$u=\mathrm{x} \rightarrow d u=1 . d x$
$d v=\csc ^{2} x d x \rightarrow \int d v=\int \csc ^{2} x d x \rightarrow v=-\cot x$
$\mathrm{By}: \int u d v=u v-\int v d u$
$\int x \csc ^{2} x d x=-x \cot x+\int \cot x d x$
$\int x \csc ^{2} x d x=-x \cot x+\ln |\sin x|+c$
Exercise:
$1-\int x^{2} e^{x} d x$
$2-\int x \cos x d x$
$3-\int \cos x e^{x} d x$

6-Trigonometric substitution

In this section we will discuss a method for evaluating integrals containing radicals by making substitutions involving Trigonometric functions.

Case one:

We will connected with integrals that contain expressions of the form
$\sqrt{a^{2}-x^{2}}$
In which a is a positive constant

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$x=a \sin \theta, \quad-\pi / 2 \leq \theta \leq \pi / 2$

Which yields
$\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} \theta}=\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$a \sqrt{\cos ^{2} \theta}=a|\cos \theta|=a \cos \theta$,
$\cos \theta \geq 0 \quad$ since $\quad-\pi / 2 \leq \theta \leq \pi / 2$

Example (*):

Evaluate $\int \frac{d x}{x^{2} \sqrt{4-x^{2}}}$

Solution.

To eliminate the radical we make the substitution
$x=2 \sin \theta \rightarrow \sin \theta=\frac{x}{2}$
$x=2 \sin \theta, \quad d x=2 \cos \theta d \theta$.
This yields

$$
\begin{gather*}
\int \frac{d x}{x^{2} \sqrt{4-x^{2}}}=\int \frac{2 \cos \theta d \theta}{(2 \sin \theta)^{2} \sqrt{4-(2 \sin \theta)^{2}}} \\
\int \frac{2 \cos \theta d \theta}{(2 \sin \theta)^{2}(2 \cos \theta)}=\int \frac{d \theta}{(2 \sin \theta)^{2}}=\frac{1}{4} \int \frac{d \theta}{\sin ^{2} \theta} \\
\frac{1}{4} \int \csc ^{2} \theta d \theta=-\frac{1}{4} \cot \theta+c \tag{1}
\end{gather*}
$$

At this point we have completed the integration.

$$
\cot \theta=\frac{\sqrt{4-x^{2}}}{x}
$$

Substituting this in (1) yields

$$
\int \frac{d x}{x^{2} \sqrt{4-x^{2}}}=-\frac{1}{4} \frac{\sqrt{4-x^{2}}}{x}+c
$$

Example:

Evaluate $\int_{1}^{\sqrt{2}} \frac{d x}{x^{2} \sqrt{4-x^{2}}}$

Solution.

We can use the result in example (${ }^{*}$) with the x -limit of integration yields.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
\int_{1}^{\sqrt{2}} \frac{d x}{x^{2} \sqrt{4-x^{2}}}=-\frac{1}{4}\left[\frac{\sqrt{4-x^{2}}}{x}\right]_{1}^{\sqrt{2}}=\frac{\sqrt{3}-1}{4}
$$

Case two:

We will connected with integrals that contain expressions of the form
$\sqrt{a^{2}+x^{2}}$
In which a is a positive constant
$x=a \tan \theta, \quad-\pi / 2 \leq \theta \leq \pi / 2$
$x=a \tan \theta, \quad d x=a \sec ^{2} \theta d \theta$.

Example:

Evaluate $L=\int_{0}^{\frac{\pi}{4}} \sqrt{1+x^{2}} d x$

Solution.

We can use the case two.

$$
\begin{aligned}
& x=\tan \theta, \quad d x=\sec ^{2} \theta d \theta \\
& L=\int_{0}^{\frac{\pi}{4}} \sqrt{1+x^{2}} d x=\int_{0}^{\frac{\pi}{4}} \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta d \theta \\
& \int_{0}^{\frac{\pi}{4}} \sqrt{\sec ^{2} \theta} \sec ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{4}} \sec \theta \sec ^{2} \theta d \theta
\end{aligned}
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$\int_{0}^{\frac{\pi}{4}} \sec ^{3} \theta d \theta=\left[\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|\right]_{0}^{\frac{\pi}{4}}$
$\frac{1}{2}[\sqrt{2}+\ln (\sqrt{2}+1)] \approx 1.148$

Remark:

$$
\begin{aligned}
& 1-\int \sec ^{n} x d x=\frac{\sec ^{n-2} x \tan x}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x \\
& 2-\int \sec \quad x d x=\ln |\sec x+\tan x|+c
\end{aligned}
$$

Case three:

We will connected with integrals that contain expressions of the form

$$
\sqrt{x^{2}-a^{2}}
$$

In which a is a positive constant

$$
x=\operatorname{asec} \theta, \quad 0 \leq \theta \leq \pi / 2
$$

$$
x=a \sec \theta, \quad d x=a \sec \theta \tan \theta d \theta
$$

Example:

Evaluate $\int \frac{\sqrt{x^{2}-25}}{x} d x$

Solution.

We can use the case three.

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\begin{aligned}
& x=5 \sec x, \quad d x=5 \sec x \tan x d x \\
& \int \frac{\sqrt{x^{2}-25}}{x} d x=\int \frac{\sqrt{25 \sec ^{2} x-25}}{5 \sec x} 5 \sec x \tan x d x \\
& \int \frac{5|\tan x|}{5 \sec x} 5 \sec x \tan x d x \\
& 5 \int \tan ^{2} x d x \\
& 5 \int\left(\sec ^{2} x-1\right) d x=5 \tan x-5 x+c
\end{aligned}
$$

6-Integrating rational functions by partial fractions

In this section we will give a general method for integrating rational functions that is based on the idea of decomposing a rational function into a sum of simple rational functions tat can be integrated by the methods studied in earlier sections.

Linear factor rule.

$$
\begin{aligned}
& 1-\frac{1}{(x)^{2}}=\frac{A}{x}+\frac{B}{x^{2}} \\
& 2-\frac{1}{(x)^{3}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{c}{x^{3}} \\
& 3-\frac{1}{2 x^{3}-8 x}=\frac{1}{2 x\left(x^{2}-4\right)}
\end{aligned}
$$

$$
=\frac{1}{2 x(x-2)(x+2)}=\frac{A}{2 x}+\frac{B}{x-2}+\frac{c}{x+2}
$$

Example:

Evaluate

$$
\int \frac{x+1}{x^{2}-3 x+2} d x
$$

Solution.
$\frac{x+1}{x^{2}-3 x+2}=\frac{x+1}{(x-1)(x-2)}=\frac{A}{X-1}+\frac{B}{x-2}$
Multiply both side by the denominator $(x-1)(x-2)$
$x+1=A(x-2)+B(x-1)$
Let $x-2=0 \rightarrow[x=2]$.
By substitute in (1)

$$
3=A(0)+B(1) \rightarrow[B=3]
$$

Let $x-1=0 \rightarrow[x=1]$.
By substitute in (1)

$$
2=A(-1)+B(0) \rightarrow[A=-2]
$$

Now

$$
\begin{aligned}
& \int \frac{x+1}{x^{2}-3 x+2} d x=\int \frac{A}{X-1} d x+\int \frac{B}{x-2} d x \\
& \int \frac{x+1}{x^{2}-3 x+2} d x=-2 \int \frac{1}{X-1} d x+3 \int \frac{1}{x-2} d x
\end{aligned}
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\int \frac{x+1}{x^{2}-3 x+2} d x=-2 \ln |x-1|+3 \ln |x-2|+c
$$

Example:

Evaluate $\int \frac{x^{2}}{(x+1)(x-1)^{2}} d x$

Solution:

$\frac{x^{2}}{(x+1)(x-1)^{2}}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{c}{(x-1)^{2}}$
Multiply both side by the denominator

$$
(x+1)(x-1)(x-1)^{2}
$$

$x^{2}=A(x-1)^{2}+B(x+1)(x-1)+c(x+1)--(1)$
Let $x-1=0 \rightarrow x=1$.
By substitute in (1)
$1=A(0)+B(0)+c(2) \rightarrow\left[c=\frac{1}{2}\right]---1$
Let $x+1=0 \rightarrow x=-1$.
By substitute in (1)
$1=A(4)+B(0)+c(0) \rightarrow\left[A=\frac{1}{4}\right]----2$
Now: By equation (1) and (2) we rusult
$1=\mathrm{A}+\mathrm{B}$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\begin{aligned}
& B=1-A=1-\frac{1}{4} \rightarrow B=\frac{3}{4} \\
& \frac{x^{2}}{(x+1)(x-1)^{2}}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{c}{(x-1)^{2}} \\
& \frac{x^{2}}{(x-1)(x-1)^{2}}=\frac{1}{4} \frac{1}{X+1}+\frac{3}{4} \frac{1}{x-1}+\frac{1}{2} \frac{1}{(x-1)^{2}} \\
& \int \frac{x^{2}}{(x+1)(x-1)^{2}} d x=\frac{1}{4} \int \frac{1}{X+1} d x+\frac{3}{4} \int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{1}{(x-1)^{2}} d x \\
& \int \frac{x^{2}}{(x-1)(x-1)^{2}} d x=\frac{1}{4} \ln |x+1|+\frac{3}{4} \ln |x-1|-\frac{1}{2} \frac{1}{(x-1)}+c
\end{aligned}
$$

Example:

Evaluate $\int \frac{x^{2}+1}{(x+2)^{3}} d x$

Solution:

$$
\frac{x^{2}+1}{(x+2)^{3}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}+\frac{c}{(x+2)^{3}}
$$

Multiply both side by the denominator by

$$
\begin{align*}
& (x+2)(x+2)^{2}(x+2)^{3} \\
& x^{2}+1=A(x+2)^{2}+B(x+2)+C \tag{1}
\end{align*}
$$

Let $x+2=0 \rightarrow x=-2$.
By substitute in (1)
$5=A(0)^{2}+B(0)+C \quad \rightarrow c=5$
$\int \frac{x^{2}+1}{(x+2)^{3}} d x=\int \frac{A d x}{(x+2)}+\int \frac{B d x}{(x+2)^{2}}+\int \frac{c d x}{(x+2)^{3}}$
$\int \frac{x^{2}+1}{(x+2)^{3}} d x=\int \frac{d x}{(x+2)}+\int \frac{d x}{(x+2)^{2}}+\int \frac{5 d x}{(x+2)^{3}}$

Example:

Evaluate

$$
\int \frac{x+3}{2 x^{3}-8 x} d x
$$

Solution.

$$
\begin{aligned}
\frac{x+3}{2 x^{3}-8 x}= & \frac{x+3}{2 x\left(x^{2}-4\right)} \\
& =\frac{x+3}{2 x(x-2)(x+2)}=\frac{A}{2 x}+\frac{B}{x-2}+\frac{c}{x+2}
\end{aligned}
$$

Multiply both side by the denominator by
$2 x(x-2)(x+2)$
$x+3=A(x-2)(x+2)+B 2 x(x+2)+C 2 x(x-2) *$
Let $x=0 \rightarrow$ By substitute in $\left(^{*}\right) \rightarrow A=-\frac{3}{4}$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Let $x-2=0 \rightarrow x=2 \rightarrow$ By substitute in $(*) \rightarrow B=\frac{15}{16}$
Let $x+2=0 \rightarrow x=-2 \rightarrow$ By substitute in $(*) \rightarrow C=\frac{1}{16}$
$\int \frac{x+3}{2 x^{3}-8 x} d x=\int \frac{A}{2 x} d x+\int \frac{B}{x-2} d x+\int \frac{c}{x+2} d x$
$\int \frac{x+3}{2 x^{3}-8 x} d x=-\frac{3}{4} \int \frac{1}{2 x} d x+\frac{15}{16} \int \frac{1}{x-2} d x+\frac{1}{16} \int \frac{1}{x+2} d x$
$\int \frac{x+3}{2 x^{3}-8 x} d x=-\frac{3}{8} \ln |2 x|+\frac{15}{16} \ln |x-2|+\frac{1}{16} \ln |x+2|+c$

Type of improper integrals and method of evaluation

In this section we will extend the concept of a define integral to include infinite interval of integration and integrands that become infinite within the interval of integration.

Type of improper integrals:

$1-\int_{1}^{\infty} \frac{1}{x+1} d x \quad \rightarrow$ improper integral
$2-\int_{-\infty}^{4} \frac{1}{x+1} d x \quad \rightarrow$ improper integral
$3-\int_{1}^{5} \frac{1}{x-1} d x \quad \rightarrow$ improper integral
$4-\int_{1}^{\infty} \frac{1}{x-1} d x \quad \rightarrow$ improper integral
$1-\int_{0}^{5} \frac{1}{x} d x \quad \rightarrow$ improper integral

Information

$\ln +\infty=\infty$
ln $-\infty=$ donote exisit
$\ln 0^{+}=-\infty$
$\ln 0^{-}=$donote exisit
$e^{\infty}=\infty$
$e^{-\infty}=0$
$\tan ^{-1}+\infty=\frac{\pi}{2}$
$\tan ^{-1}-\infty=-\frac{\pi}{2}$
Case (1): $[\mathbf{a},+\infty)$
$\int_{a}^{+\infty} f(x) d x=\lim _{l \rightarrow \infty} \int_{a}^{l} f(x) d x$
$\lim _{l \rightarrow \infty} b=\left\{\begin{aligned} \text { number } & \rightarrow \text { converges } \\ \pm \infty, \text { not exisist } & \rightarrow \text { diverge }\end{aligned}\right.$

Example:

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
find $\int_{1}^{\infty} \frac{1}{x} d x$

Solution:

$\int_{1}^{\infty} \frac{1}{x} d x \rightarrow \lim _{l \rightarrow \infty} \int_{1}^{l} \frac{1}{x} d x \rightarrow \lim _{l \rightarrow \infty}\left[\ln |x| \begin{array}{l}l \\ 1\end{array}\right]$
$=\lim _{l \rightarrow \infty}[\ln |l|-\ln |1|]=\lim _{l \rightarrow \infty}[\ln |l|-0]$
$=\lim _{l \rightarrow \infty} \ln |l|=\ln |\infty|=\infty$ diverge

Example:

$\int_{0}^{\infty} e^{-2 x} d x$

Solution:

$\int_{0}^{\infty} e^{-2 x} d x \rightarrow \lim _{l \rightarrow \infty} \int_{0}^{l} e^{-2 x} d x \rightarrow \lim _{l \rightarrow \infty}\left(\left.\frac{e^{-2 x}}{-2}\right|_{0} ^{l}\right)$
$=\lim _{l \rightarrow \infty}\left[\frac{e^{-2 l}}{-2}+\frac{1}{2}\right]=\frac{e^{-2 \infty}}{-2}+\frac{1}{2}=0+\frac{1}{2}=\frac{1}{2} \rightarrow$ converges

Remark:

$e^{-2 \infty}=e^{-\infty}=0$.
Case (2): $(-\infty,+\infty)$
$\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x$

$$
=\lim _{l \rightarrow-\infty} \int_{l}^{0} f(x) d x+\lim _{l \rightarrow+\infty} \int_{0}^{l} f(x) d x
$$

Hence notes:

converges \pm converges $=$ converges
converges \pm diverge $=$ diverge

Example:

find $\int_{-\infty}^{+\infty} \frac{1}{1+x^{2}} d x$

Solution:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \frac{1}{1+x^{2}} d x=\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x+\int_{0}^{+\infty} \frac{1}{1+x^{2}} d x \\
& 1-\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x
\end{aligned}
$$

$$
=\lim _{l \rightarrow-\infty} \int_{l}^{0} \frac{1}{1+x^{2}} d x
$$

$$
=\lim _{l \rightarrow-\infty}\left(\left.\tan ^{-1} x\right|_{l} ^{0}\right)
$$

$$
=\lim _{l \rightarrow-\infty}\left[-\tan ^{-1} l\right]
$$

$$
=-\tan ^{-1}(-\infty)=\frac{\pi}{2}
$$

$$
2-\int_{0}^{+\infty} \frac{1}{1+x^{2}} d x
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\begin{aligned}
& =\lim _{l \rightarrow+\infty} \int_{0}^{l} \frac{1}{1+x^{2}} d x \\
& =\lim _{l \rightarrow+\infty}\left(\left.\tan ^{-1} x\right|_{0} ^{l}\right) \\
& =\lim _{l \rightarrow+\infty}\left[\tan ^{-1} l-\tan ^{-1} 0\right]
\end{aligned}
$$

$$
=\lim _{l \rightarrow+\infty}\left[\tan ^{-1} l\right]=\tan ^{-1}(+\infty)=\frac{\pi}{2}
$$

$$
\int_{-\infty}^{+\infty} \frac{1}{1+x^{2}} d x=\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x+\int_{0}^{+\infty} \frac{1}{1+x^{2}} d x
$$

$$
\int_{-\infty}^{+\infty} \frac{1}{1+x^{2}} d x=\frac{\pi}{2}+\frac{\pi}{2}=\pi
$$

Case (3): $\left[\mathrm{a}, \mathrm{b}^{-}\right]$

If f is continuous on the interval $[\mathrm{a}, \mathrm{b}]$, except for an infinite discontinuity at b, then the improper integral of f over the interval $[\mathrm{a}, \mathrm{b}]$, is defined as.

$$
\int_{a}^{b} f(x) d x=\lim _{l \rightarrow b^{-}} \int_{a}^{l} f(x) d x
$$

Example:

$\int_{0}^{1} \frac{1}{\sqrt{1-x}} d x$

Solution:

$$
\int_{0}^{1} \frac{1}{\sqrt{1-x}} d x=\lim _{l \rightarrow 1} \int_{0}^{l} \frac{1}{\sqrt{1-x}} d x=\lim _{l \rightarrow 1}[-2 \sqrt{1-x}]_{0}^{l}
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$=\lim _{l \rightarrow 1}[-2 \sqrt{1-l}+2]=2$

Case (4): $\left[a^{+}, b\right]$

If f is continuous on the interval $[\mathrm{a}, \mathrm{b}]$, except for an infinite discontinuity at a, then the improper integral of f over the interval [a,b], is defined as.

$$
\int_{a}^{b} f(x) d x=\lim _{l \rightarrow a+} \int_{l}^{b} f(x) d x
$$

Example:

find $\int_{1}^{2} \frac{1}{1-x} d x$

Solution:

$$
\begin{aligned}
& \int_{0}^{3} \frac{1}{1-x} d x=\lim _{l \rightarrow 1^{+}} \int_{l}^{2} \frac{1}{1-x} d x \\
& =\lim _{l \rightarrow 1^{+}}[\ln |1-x|]_{l}^{2} \\
& =\lim _{l \rightarrow 1^{+}}[-\ln |-1|+\ln |1-l|] \\
& =\lim _{l \rightarrow 1^{+}} \ln |1-l|=\ln |0|=-\infty
\end{aligned}
$$

Example:

$\int_{0}^{1} \ln x d x$

Solution:

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
\begin{aligned}
& \int_{0}^{1} \ln x d x \rightarrow \lim _{a \rightarrow 0^{+}} \int_{b}^{1} \ln x d x \\
& \left.\lim _{a \rightarrow 0^{+}}(x \ln x-x)\right|_{a} ^{1} \\
& =\lim _{a \rightarrow 0^{+}}[(\ln 1-1)-(a \ln a-a)] \\
& =\lim _{a \rightarrow 0^{+}}[(0-1)-(a \ln a-a)] \\
& =[(-1)-(\infty)] \\
& =(\text { converge }- \text { diverge })=\text { diverge }
\end{aligned}
$$

Example:

$\int_{0}^{2} \frac{1}{(x-1)^{2}} d x$

Solution:

$\int_{0}^{2} \frac{1}{(x-1)^{2}} d x \rightarrow \int_{0}^{1} \frac{1}{(x-1)^{2}} d x+\int_{1}^{2} \frac{1}{(x-1)^{2}} d x$
$\int \frac{1}{(x-1)^{2}} d x=\int(x-1)^{-2} d x=\frac{-1}{x-1}$
$\lim _{a \rightarrow 1^{-}} \int_{0}^{a} \frac{1}{(x-1)^{2}} d x+\lim _{a \rightarrow 1^{+}} \int_{a}^{0} \frac{1}{(x-1)^{2}} d x$
$\left.\lim _{a \rightarrow 1^{-}} \frac{-1}{x-1} \quad\right|_{o} ^{a}+\left.\lim _{a \rightarrow 1^{+}} \frac{-1}{x-1} \quad\right|_{a} ^{2}$
$\lim _{a \rightarrow 1^{-}}\left(\frac{-a}{a-1}-\frac{-0}{0-1}\right)+\lim _{a \rightarrow 1^{+}}\left(\frac{-2}{2-1}-\frac{-a}{a-1}\right)$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$\lim _{a \rightarrow 1^{-}}\left(\frac{-a}{a-1}-0\right)+\lim _{a \rightarrow 1^{+}}\left(-2-\frac{-a}{a-1}\right)$
diverge + diverge $=$ diverge

Exercise:

$1-$ find $\int_{1}^{\infty} \frac{1}{x^{3}} d x$
$2-$ find $\int_{0}^{3} \frac{1}{x-3} d x$
$3-$ find $\int_{1}^{4} \frac{1}{(x-2)^{2 / 3}} d x$
$4-$ find $\int_{0}^{+\infty} \frac{1}{\sqrt{2}(x+1)} d x$
$5-$ find $\int_{0}^{2} \frac{1}{(x-1)^{2}} d x$

Sequences and their limit, monotone sequences

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji Sequence:

("temm', 'Alemenn'to 'member' meant the same thing)

Sequences and their limit:

The Calculus in Renewable Energy Department

 Dr. Thamer AL-khafaji
Definition:

A sequences is a function whose domain is a set of positive integers. Specifically,
we will regard the expression $\left\{a_{n}\right\}_{n=1}^{+\infty}$ be an alternative notion for the function $f(n)=a_{n}, \quad n=1,2,3, \ldots \ldots$

There are two types of sequence
1-The first type is finite sequence
2-The second type is infinite sequence.

Example:

$a_{n}=\{1,2,3\} \quad$ finite sequence
$a_{n}=\{1,2,3, \ldots\} \quad$ infinite sequence

Example:

Find the three terms of the sequence.
$a_{n}=\frac{5 n}{4+n^{2}}$

Solution:

$$
\begin{aligned}
& n_{1}=1 \rightarrow a_{1}=\frac{5 n}{4+n^{2}}=\frac{5(1)}{4+(1)^{2}}=\frac{5}{5}=1 \\
& n_{2}=2 \rightarrow a_{2}=\frac{5 n}{4+n^{2}}=\frac{5(2)}{4+(2)^{2}}=\frac{10}{8}=\frac{5}{4} \\
& n_{3}=3 \rightarrow a_{3}=\frac{5 n}{4+n^{2}}=\frac{5(3)}{4+(3)^{2}}=\frac{15}{13}
\end{aligned}
$$

The three terms of the sequence are $1, \frac{5}{4}, \frac{15}{13}$

Example:

Find the four terms of the sequence.

$$
a_{n}=\cos \left(\frac{n \pi}{2}\right)
$$

Solution:

$n_{1}=1 \rightarrow a_{1}=\cos \left(\frac{n \pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0$.
$n_{2}=2 \rightarrow a_{2}=\cos \left(\frac{n \pi}{2}\right)=\cos \left(\frac{2 \pi}{2}\right)=-1$.
$n_{3}=3 \rightarrow a_{3}=\cos \left(\frac{n \pi}{2}\right)=\cos \left(\frac{3 \pi}{2}\right)=0$.
$n_{4}=4 \rightarrow a_{4}=\cos \left(\frac{n \pi}{2}\right)=\cos \left(\frac{4 \pi}{2}\right)=1$.
The four terms of the sequence are $0,-1,0,1$

Example:

Find the four terms of the sequence.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

$$
a_{n}=(-1)^{n+1} \tan \left(\frac{n \pi}{2}\right)
$$

Solution:

$$
\begin{aligned}
& n_{1}=1 \rightarrow a_{1}=(-1)^{n+1} \tan \left(\frac{n \pi}{2}\right)=\tan \left(\frac{\pi}{2}\right)=\frac{\sin 90}{\cos 90} \\
&=\frac{1}{0}=\infty \\
& n_{2}=2 \rightarrow a_{2}=(-1)^{n+1} \tan \left(\frac{n \pi}{2}\right)=-\tan \left(\frac{2 \pi}{2}\right)=0 . \\
& n_{3}=3 \rightarrow a_{3}=(-1)^{n+1} \tan \left(\frac{n \pi}{2}\right)=\tan \left(\frac{3 \pi}{2}\right)=\infty . \\
& n_{4}=4 \rightarrow a_{4}=(-1)^{n+1} \tan \left(\frac{n \pi}{2}\right)=-\tan \left(\frac{4 \pi}{2}\right)=0 .
\end{aligned}
$$

The four terms of the sequence are $\infty, 0, \infty, 0$

Example:

Find the limit of the sequence $\left\{\frac{n}{2 n+1}\right\}_{n=1}^{+\infty}$

Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{n}{2 n+1}=\lim _{n \rightarrow+\infty} \frac{\frac{n}{n}}{\frac{2 n}{n}+\frac{1}{n}}=\lim _{n \rightarrow+\infty} \frac{1}{2+\frac{1}{n}}=\frac{1}{2+\frac{1}{\infty}} \\
& =\frac{1}{2+0}=\frac{1}{2}
\end{aligned}
$$

Exercise:

1-Find the limit of the sequence $\lim _{n \rightarrow+\infty} \sqrt[n]{n}$
2-Find the four terms of the sequence.
$a_{n}=\sin \left(\frac{n \pi}{2}\right)$
3- Find the limit of the sequence $\left\{\frac{n}{e^{n}}\right\}_{n=1}^{+\infty}$
4- Find the limit of the sequence $\left\{\frac{3 n}{2 n}\right\}_{n=1}^{+\infty}$

Remark:

$1-)-1 \leq \sin \theta \leq 1$
$2-)-1 \leq \cos \theta \leq 1$
$3-) \infty .0=0$
4-) $\frac{n}{\infty}=0$

Example:

Determine whether the sequence converge or diverges.
$\lim _{n \rightarrow \infty} \frac{1}{n} \cos \left(\frac{n}{2}\right)$

Solution:

$-1 \leq \cos \left(\frac{n}{2}\right) \leq 1$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$\frac{-1}{n} \leq \cos \left(\frac{n}{2}\right) \leq \frac{1}{n}$
$1-\lim _{n \rightarrow \infty} \frac{-1}{n}=\frac{-1}{\infty}=0$
$2-\lim _{n \rightarrow \infty} \frac{1}{n}=\frac{1}{\infty}=0$
$\lim _{n \rightarrow \infty} \frac{1}{n} \cos \left(\frac{n}{2}\right)=0$. convergent

Example:

Determine whether the sequence converge or diverges.
$\lim _{n \rightarrow \infty} \frac{\sin 2 n}{1+\sqrt{n}}$

Solution:

$-1 \leq \sin 2 n \leq 1$
$\frac{-1}{1+\sqrt{n}} \leq \frac{\sin 2 n}{1+\sqrt{n}} \leq \frac{1}{1+\sqrt{n}}$
$1-\lim _{n \rightarrow \infty} \frac{-1}{1+\sqrt{n}}=\frac{-1}{\infty}=0$
$2-\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=\frac{1}{\infty}=0$
$\lim _{n \rightarrow \infty} \frac{\sin 2 n}{1+\sqrt{n}}=0$. convergent
monotone sequences:

The Calculus in Renewable Energy Department

 Dr. Thamer AL-khafajiIn this section we will study several techniques that can be used to determine whether a sequences converges.

Definition:

A sequence $\left\{a_{n}\right\}_{n=1}^{+\infty}$ is called
strictly increasing if $\quad a_{1}<a_{2}<a_{3}<\cdots<a_{n}<\cdots$
increasing if $\quad a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots$
srrictily decreasing if $a_{1}>a_{2}>a_{3}>\cdots>a_{n}>\cdots$ decreasing if $a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots$

Example:

Determine the monotone sequence $1,1,2,2,3,3 \ldots \ldots$ increasing $1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3} \ldots$. decreasing
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{3} \ldots \frac{n}{n+1}$ strictly increasing $1, \frac{1}{2}, \frac{1}{3} \ldots \ldots \frac{1}{n}$ srrictily decreasing $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4} \ldots(-1)^{n+1} \frac{1}{n}$ Neitherincreasing nor decreasing

9. Infinite series. The comparison

Definition:

An infinite series is an expression that can be written in the form $\sum_{k=1}^{\infty} u_{k}=u_{1}+u_{2}+u_{3}+\cdots+u_{k}+\cdots$

The numbers $u_{1}, u_{2}, u_{3}, \ldots$ are called the terms of the series.

Definition:

Let $\left\{s_{n}\right\}$ be a sequence of the partial sums of the series
$u_{1}+u_{2}+u_{3}+\cdots+u_{k}+\cdots$
If the sequence $\left\{s_{n}\right\}$ converges to a limit s, then the series is said to converges to s , and s is called the sum of the series. we denote this by writing
$s=\sum_{k=1}^{\infty} u_{k}$
If the sequence of partial sums diverges, then the series is said to be diverge. A diverge series has no sum.

Example:

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n}$ converge or diverge. If it converges, find the sum.

Solution:

$s_{1}=1$
$s_{2}=1-1=0$
$s_{3}=1-1+1=1$
$s_{3}=1-1+1-1=0$
And so.
Thus. The sequence of partial sum is
$1,0,1,0, \ldots \ldots$.
Since This is diverge sequence, the given series diverges and consequently has no sum.

10. Ratio and Root tests. Alternating series

Definition:
Let $\sum u_{k}$ be a series with positive terms and suppose that $p=\lim _{k \rightarrow+\infty} \frac{u_{k+1}}{u_{k}}$
(a) series converges if $p<1$.
(b) series diverges if $p>1$ or $p=+\infty$.
(c) the test is inconcusive if $p=1$.

Example:

Test the following series by ratio test. $\sum_{k=1}^{\infty} \frac{2^{k}}{k^{2}}$

Solution:

$p=\lim _{k \rightarrow \infty}\left|\frac{\frac{2^{k+1}}{(k+1)^{2}}}{\frac{2^{k}}{k^{2}}}\right|=\lim _{k \rightarrow \infty}\left|\frac{2^{k+1}}{(k+1)^{2}} \cdot \frac{k^{2}}{2^{k}}\right|$

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{2 k^{2}}{(k+1)^{2}}=\lim _{k \rightarrow \infty} \frac{2 k^{2}}{k^{2}+2 k+1}=2 \\
>1 . \text { series diverges }
\end{gathered}
$$

By: (b) series diverges if $p>1$ or $p=+\infty$.

Example:

Test the following series by ratio test. $\sum_{k=1}^{\infty} \frac{1}{(2 k+1)!}$

Solution:

Example:

Test the following series by ratio test. $\sum_{k=1}^{\infty} \frac{1}{k}$

Solution:

Definition:

Let $\sum u_{k}$ be a series with positive terms and suppose that $p=\lim _{k \rightarrow+\infty} \sqrt[k]{u_{k}}$
(a) series converges if $p<1$.
(b) series diverges if $p>1$ or $p=+\infty$.
(c) the test is inconcusive if $p=1$.

Example:

Test the following series by ratio test. $\sum_{k=1}^{\infty} k^{k}$

Solution:

$p=\lim _{k \rightarrow+\infty} \sqrt[k]{k_{k}}=\lim _{k \rightarrow+\infty} k \cong \infty$. diverges
By: (b) series diverges if $p>1$ or $p=+\infty$.

Definition:

If $a_{k}>0$ for $k=1,2,3, \ldots .$, then the series

$$
a_{1}-a_{2}+a_{3}-a_{4}+\cdots \quad 0 r
$$

$$
-a_{1}+a_{2}-a_{3}+a_{4}
$$

$-\cdots$ the series is called alternating series
Convergent if the following conditional hold:
(a) $\left|\quad a_{1}\right| \geq\left|a_{2}\right| \geq a_{3} \geq\left|a_{4}\right|+\cdots$
(b) $a_{2 m+1} \leq 0, \quad a_{2 m} \geq 0 . \quad \forall m=1,2,3, .$.
(c) $\lim _{k \rightarrow+\infty} a_{k}=0$.

Example:

Test the following series is converge or diverge
$\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}$

Solution:

(a) $-\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\cdots$
$\left|a_{1}\right|=|-1|=1$
$\left|a_{2}\right|=\left|+\frac{1}{2}\right|=\frac{1}{2}$
$\left|a_{3}\right|=\left|-\frac{1}{3}\right|=\frac{1}{3}$
$\therefore \quad 1>\frac{1}{2}>\frac{1}{3}$.
(b) - (b) $a_{1}=-1<0, \quad a_{2}=\frac{1}{2}>0$.
(c) $\lim _{k \rightarrow+\infty}(-1)^{k} \frac{1}{k}=0$.
$\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}$ is converges.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

11. Conditional converges.

Maclaurin series and taylor series. And their approximation power series.

Taylor Polynomials

$$
\begin{aligned}
& P_{n} x=f(c)+\frac{f^{\prime}(c)(x-c)^{\prime}}{1!}+\ldots f^{n}(c)(x-c)^{n} \\
& \ln (1.1) \\
& P_{n} x=f(0)+\frac{f^{\prime}(0) x^{\prime}}{1!}+\frac{e^{0 \prime 2}(0) x^{2}}{2!}+\ldots \frac{f^{n}(0) x^{\prime}}{n!} \\
& 11: 07
\end{aligned}
$$

The Calculus in Renewable Energy Department

Definition:

The Taylor series for f at $x=a$ is a series of the form.

$$
\begin{aligned}
T(a)= & \sum_{k=0}^{\infty} \frac{f^{k}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a) \\
& +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{k}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

Example:

Find the Taylor series for the function $f(x)=$ e^{x} when $a=10$

Solution:

$$
\begin{aligned}
& f(x)=e^{x} \rightarrow f(10)=e^{10} \\
& f^{\prime}(x)=e^{x} \rightarrow f^{\prime}(10)=e^{10} \\
& f^{\prime \prime}(x)=e^{x} \rightarrow f^{\prime \prime}(10)=e^{10}
\end{aligned}
$$

$$
T(a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)+\cdots
$$

$$
+\frac{f^{k}(a)}{k!}(x-a)^{k}
$$

$$
T(a)=e^{10}+e^{10}(x-10)+\frac{e^{10}}{2!}(x-10)^{2}
$$

$$
+\frac{e^{10}}{3!}(x-10)^{3}+\cdots
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\begin{aligned}
& T(a)=e^{10}\left[(x-10)+\frac{1}{2!}(x-10)^{2}+\frac{1}{3!}(x-10)^{3}\right. \\
& \quad+\cdots] \\
& T(a)=e^{10} \sum_{k=0}^{\infty} \frac{(x-10)^{k}}{k!}
\end{aligned}
$$

Example:

Find the Taylor series for the function $f(x)=$ $\ln x$ when $a=1$

Solution:

$$
\begin{aligned}
& f(x)=\ln x \rightarrow f(1)=0 \\
& f^{\prime}(x)=\frac{1}{x} \rightarrow f^{\prime}(1)=1 \\
& f^{\prime \prime}(x)=\frac{-1}{x^{2}} \rightarrow f^{\prime \prime}(1)=-1 \\
& f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} \rightarrow f^{\prime \prime \prime}(1)=2
\end{aligned}
$$

$$
T(a)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)+\cdots
$$

$$
+\frac{f^{k}(a)}{k!}(x-a)^{k}
$$

$$
T(a)=0+(x-1)-\frac{1}{2!}(x-1)^{2}+\frac{2}{3!}(x-1)^{3}+\cdots
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
T(a)=\sum_{k=1}^{\infty} \frac{(-1)^{2 k} k(x-1)^{k}}{k!}
$$

Exercise:

Find the Taylor series for the following functions

$$
\begin{aligned}
& 1-f(x)=\frac{1}{x} \text { when } a=-1 \\
& 2-f(x)=\cos x \text { when } a=\frac{-\pi}{4} \\
& 3-f(x)=x^{2} \text { when } a=\frac{1}{2}
\end{aligned}
$$

Definition:
The Maclaurin series for f at $x=0$ is a series of the form.

$$
\begin{aligned}
T(0)= & \sum_{k=0}^{\infty} \frac{f^{k}(0)}{k!}(x)^{k}=f(a)+f^{\prime}(0)(x) \\
& +\frac{f^{\prime \prime}(a)}{2!}(x)^{2}+\cdots+\frac{f^{k}(a)}{k!}(x)^{k}
\end{aligned}
$$

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

Example:

Find the Maclaurin series for the following function

$$
f(x)=(1+x)^{\frac{3}{2}}
$$

Solution:

$f(x)=(1+x)^{\frac{3}{2}} \rightarrow f(0)=1$
12- Differentiating and integrating power series.

Definition:

A power series is a series of the form
$\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\cdots$
Or

$$
\begin{gathered}
\sum_{k=0}^{\infty} c_{k}\left(x-a_{k}\right)^{k}=a_{0}+c_{1}\left(x-a_{1}\right)+c_{2}\left(x-a_{2}\right)^{2} \\
+\cdots+c_{k}\left(x-a_{k}\right)^{k}+\cdots
\end{gathered}
$$

Example:

find the second terms of a power series in $x, \sum_{k=1}^{\infty} \frac{x^{k}}{k}$

Solution:

$\sum_{k=1}^{\infty} \frac{x^{k}}{k}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots$ is a power series in x

Example:

find the thired terms of a power series in $x, \sum_{k=1}^{\infty} \frac{x^{k}}{k!}$

Solution:

$\sum_{k=1}^{\infty} \frac{x^{k}}{k!}=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ is apower series in x

Example:

find the thired terms of a power series in $(x-2)$,
$\sum_{k=0}^{\infty} \frac{(-1)^{k}(x-2)^{k}}{k!}$

Solution:

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}(x-2)^{k}}{k!}=1-\frac{x-2}{1}+0
$$

$$
+\cdots \text { is apower series in }(x-2)
$$

Remark:

$1-\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \ldots$
$1-\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \ldots$

Differentiating power series.

Definition:

If $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \quad$ has radius of converges c then:
$a-\sum_{k=0}^{\infty} k a_{k} x^{k-1}$ also has radies of convergence c
$b-f(x)$ is differentiable on $(-c, c)$.
$c-f^{\prime}(x)=\sum_{k=0}^{\infty} k a_{k} x^{k-1}$ on $(-c, c)$.

Integration power series.

Definition:

If $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \quad$ has radius of converges c then:

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$a-\sum_{k=0}^{\infty} \frac{a_{k} x^{k+1}}{k+1}$ also has radies of convergence c
$b-\int f(x) d x$ is differentiable on $(-c, c)$.
$c-\int f(x) d x=\sum_{k=0}^{\infty} \frac{a_{k} x^{k+1}}{k+1}+c \quad$ on $\quad(-c, c)$.

Example:

Prove that $\frac{d}{d x} \sin x=\cos x$

Solution:

$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \ldots$
$\frac{d}{d x} \sin x=1-3 \frac{x^{2}}{3!}+\frac{5 x^{4}}{5!}-\frac{7 x^{6}}{7!} \ldots$
$\frac{d}{d x} \sin x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\cos x$.

Exc

Prove that $\int \cos x=-\sin x+c, \quad-\infty<x<\infty$.

Example:

Express $\int \sin x^{2} d x$ as a power series

13-polar coordinates. Curves defined by parametric equations.

Def

A polar coordinates system in a plane consists of a fixed point o, called the pole (or origin), and a ray emantig from the pole. called the polar axis.
polar coordinates $\left(r, \theta^{0}\right)$ which the first number r
gives the directed distance from 0 to p . and the second number θ gives the directed angle from the initial ray to op.

Example:

Find the polar coordinates of the point $\left(3,30^{0}\right)$.

Slo

$p(3,30)$
$p(3,30-360)$
$p(-3,30-180)$
$p(-3,30+180)$

Exce:

Find the polar coordinates of the points
$1-p\left(5,45^{0}\right)$
$2-p\left(4,90^{0}\right)$,
$3-p\left(6,270^{0}\right)$,

Example:

Find all the polar coordinates of the point $\left(2,30^{0}\right)$.

Solution:

1-when $r=2$
the angle $\theta=30 \pm 1.360^{0}$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji
the angle $\theta=30 \pm 2.360^{0}$
the angle $\theta=30 \pm 3.360^{\circ}$
:
There fore the polar coordinates

$$
\begin{aligned}
& \left(2,30 \pm n .360^{0}\right) n=0,1,2,3, \ldots \\
& \text { or }\left(2,30+n .360^{0}\right) n=0, \pm 1, \pm 2, \pm 3, \ldots
\end{aligned}
$$

2 -when $r=-2$
the angle $\theta=-150 \pm 1.360^{0}$
the angle $\theta=-150 \pm 2.360^{\circ}$
the angle $\theta=-150 \pm 3.360^{\circ}$

!

There fore the polar coordinates

$$
\begin{aligned}
& \left(-2,-150 \pm \mathrm{n} .360^{0}\right) n=0,1,2,3, \ldots \\
& \text { or }\left(-2,-150+\mathrm{n} .360^{0}\right) n=0, \pm 1, \pm 2, \pm 3, \ldots
\end{aligned}
$$

Thus the polar coordinates are
$\left(2,30+n .360^{0}\right) n=0, \pm 1, \pm 2, \pm 3, \ldots$
$\left(-2,-150+\mathrm{n} .360^{0}\right) n=0, \pm 1, \pm 2, \pm 3, \ldots$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Remark:

To find the Cartesian coordinate equivalent to coordinate and rice verse, we use the following equation
$1-r^{2}=r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta$
$2-\cos \theta=\frac{x}{r}$
$3-\sin \theta=\frac{y}{r}$

$$
\begin{aligned}
& 4-\tan \theta=\frac{y}{x} \\
& 5-x=r \cos \theta \\
& 6-y=r \sin \theta \\
& 7-r=\sqrt{x^{2}+y^{2}} \\
& 8-\theta=\cos ^{-1} \frac{x}{r} \\
& 9-\theta=\sin ^{-1} \frac{y}{r}
\end{aligned}
$$

Ex
Find the Cartesian coordinate of the point $p\left(2,60^{\circ}\right)$.
Sol
$x=r \cos \theta \rightarrow x=2 \cos \quad 60 \rightarrow x=2 \frac{1}{2} \rightarrow x=1$
$y=r \sin \theta \rightarrow y=2 \sin \quad 60 \rightarrow y=2 \frac{\sqrt{3}}{2} \rightarrow y=\sqrt{3}$
$(x, y)=(1, \sqrt{3})$
Ex
Find the Cartesian coordinate of the point $p\left(2,90^{\circ}\right)$.
Sol
$x=r \cos \theta \rightarrow x=2 \cos \quad 90 \rightarrow x=2.0 \rightarrow x=0$
$y=r \sin \theta \rightarrow y=2 \sin \quad 90 \rightarrow y=2.1 \rightarrow y=2$

$$
(x, y)=(0,2)
$$

Exc
Find the Cartesian coordinate of the points and sketch.
$1-p\left(-2,0^{0}\right)$
$2-p\left(-2,90^{0}\right)$.
$3-p\left(-2, \frac{\pi}{6}\right)$.
$4-p\left(-4, \frac{\pi}{3}\right)$.

14-Tangent line and length for parametric and polar curves. Area in polar coordinates.

In this section we will derive the formula required to find slopes, tangent lines, and arc lengths of parametric and polar curves.

Def736
We will be concerned in this section with curves that are given by parametric equations

$$
x=f(t), y=g(t) .
$$

In which $f(t)$ and $g(t)$ have continuous first derivative with respect to t .it can be proved that if $d x / d t \neq 0$, then y is differentiable function of x, in which case the chain rule implies that

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

This formula makes it possible to find $\frac{d y}{d x}$ directly from the parametric equations without eliminating the parameter.

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Ex

Find the slope and tangent line to the unit circle.
$x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq 2 \pi$
At the point where $t=\pi / 6$

Solution:
By: $\quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
The slope at a general point on the circle is
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\cos t}{-\sin t}=-\cos t$
Thus, the slope at $t=\pi / 6$ is

The Calculus in Renewable Energy Department
Dr. Thamer AL-khafaji
$\left.\frac{d y}{d x} \quad\right|_{t=\pi / 6}=-\cos \pi / 6=-\sqrt{3}$
Ex
With out eliminating the parameter.
Find $\frac{d y}{d x}$ and $d^{2} y / d^{2} x$ at the points $(1,1)$ and $(1,-1)$ on the semicubical parabola given by the parametric equations $x=t^{2}, \quad y=t^{3},(-\infty<t<+\infty)$

Sol
By: $\quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t^{2}}{2 t}=\frac{3}{2} t . \quad t \neq 0$
And from (*) applied to $y^{\prime}=\frac{d y}{d x}$ we have
$\frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime}}{d x}=\frac{\frac{d y^{\prime}}{d t}}{\frac{d y}{d t}}=\frac{\frac{3}{2}}{2 t}=\frac{3}{4 t}$.
Since the point $(1,1)$ on the curve corresponds to $t=1$ in the parametric equations, it follows from (1) and (2) that $\left.\frac{d y}{d x} \quad\right|_{t=1}=\frac{3}{2} \quad$ and
$\left.\frac{d^{2} y}{d x^{2}} \quad\right|_{t=1}=\frac{3}{4}$

Similarly, the point $(1,-1)$ on the curve corresponds to $\mathrm{t}=-1$ in the parametric equations, so applying (1) and (2) again yields
$\left.\frac{d y}{d x} \quad\right|_{t=-1}=-\frac{3}{2} \quad$ and
$\left.\frac{d^{2} y}{d x^{2}} \quad\right|_{t=-1}=\frac{-3}{4}$

Def 740ca

If no segment of the polar curve $r=f(\theta)$ is traced more than once as θ increases from α to β and if $d r / d \theta$ is continuous for $\alpha \leq \theta \leq \beta$, then the arc length L from $\theta=\alpha$ to $\theta=\beta$ is

$$
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2} d \theta}
$$

The Calculus in Renewable Energy Department Dr. Thamer AL-khafaji

Ex
Find the arc length of the spiral $r=e^{\theta}$ in Figure between $\theta=0$ and $\theta=\pi$.

Sol
$L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2} d \theta}$

$$
\begin{aligned}
& L=\int_{0}^{\pi} \sqrt{\left(e^{\theta}\right)^{2}+\left(e^{\theta}\right)^{2} d \theta} \\
& \left.L=\int_{0}^{\pi} \sqrt{2} e^{\theta} d \theta=\sqrt{2} e^{\theta} \quad\right]_{0}^{\pi}=\sqrt{2}\left(e^{\theta}-1\right) \approx 31.3
\end{aligned}
$$

References

1-Calculus: late transcendentals . $-7^{\text {th }}$., combined /Howard Anton, Irl Bivents, stepen Davis. 2002.

2- Calculus : Lester R. Ford, Sr.\& Jr.(1963)

3- The calculus the wors: Bard, Jason Socrates 2006.ISBN 1-56025-706-7.

4- Calculus :Blank, Brian E;Krantz , steven George 2006.ISBN 9781-931914-59-8.

