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 Chapter two 

 

In this introductory chapter will study Course description 

for second course written in renewable energy 

department. 
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Review of Inverse functions and inverse trigonometric 

functions.  

In every day language the term (inversion) conveys the 

idea of a reversal. For example in meteorology a 

temperature inversion is a reversal in the usual 

temperature proper 

Definition: 

The function   has inverse (denoted by    ) if is 

 onto and one to one function and 

    ( ( ))   (   ( ))     

Example: 

Find the inverse of      ( )        

Solution: 

Since        is one to one and onto (check) 

Then    ( ) exist. 

   
   

 
    ( )  

   

 
 

 (   ( ))   (
   

 
)   (

   

 
)      

  (   ( ))     

   ( ( ))        (     ) 
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Example: 

Find the inverse of           

Solution: 

Since           is one to one and onto (check) 

Then    ( ) exist. 

   √     ( )  √  

 (   ( ))   (√ )  (√ )
 

   

   ( ( ))     (  )  √      

Conform of each of the following. 

1-The inverse of  ( )           ( )  
 

 
  (     ) 

2-The inverse of  ( )           ( )   
 

    (     ) 

 

Inverse Trigonometric functions  

A common problem in trigonometry is to find an angle 

whose trigonometric functions are known. 

properties: 
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Theorem: 

       ( )       (
 

 
) 

Proof (1): 

           ( ) 

              ( ) 

        

                                          
 

    
 

                                          
 

 
 

                 
 

 
 

                                            (
 

 
) 
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     ( )       (
 

 
) 

 

       ( )       (
 

 
)  (     ) 

       ( )      (
 

 
)  

 

 
 

Proof (3): 

           ( ) 

              ( ) 

        

      .
 

 
  / 

     ( )           .
 

 
  / 

     ( )  
 

 
   

                                          ( )    
 

 
 

                                          ( )       ( )  
 

 
 

 

       (  )         ( )  (     ) 

       (  )         ( ) 
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Proof (5): 

           (  ) 

                   (  ) 

   ( )     

       ( ) 

        (   ) 

     (  )           (   ) 

     (  )      

      (  )         ( )  

 

     (     ( ))                             

       .   ( )/               
 

 
   

 

 
 

       ( )      ( )  
 

 
 

Example: 

Find the domain and Rang of      ( ) and sketch 

Solution: 

 ( )       ( )         

 ( )       ( ) is one to one on 
– 
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     ( )    

     (
 

 
)  

 

 
 

     (
 

√ 
)  

 

 
 

     (√
 

 
)  
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Properties: 

        (      )    

Remark: 

 ( )       (  )        ( ) 

Proof: 

                           (  ) 

                                 (  ) 

         

         

       (  ) 

                  ( )     

        ( ) 

                (  )        ( ) 

 

Example: 

Find the domain and Rang of       ( ) and sketch 

Solution: 

 ( )       ( )         

 ( )       ( ) is one to one on ,   - 
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     (      )    

 

      
 

 
        

Example: 

Find the domain and Rang of       ( ) and sketch 

Solution: 

 ( )       ( )         

 ( )       ( ) is one to one on .
– 

 
 
 

 
/ 
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Remark:  

 ( )       (  )        ( ) 

Proof: 

       (  ) 

             (  ) 

 

         

         

       (  ) 
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      ( )     

       ( )        (  ) 

Remark: 

     
 

 
        

Example: 

Find the domain and Rang of       ( ) and sketch 

Solution: 

 ( )       ( )         

 ( )       ( ) is one to one on (   ) 

                

   (   )  
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Example: 

Find the domain and Rang of       ( ) and sketch 

Solution: 

 ( )       ( )         

 ( )       ( ) is one to one on ,   - 

   *     +  *      + 

   0
  

 
 
 

 
1  

 

 
  

 

 

Example: 

Find the domain and Rang of       ( )and and sketch 

Solution: 

 ( )       ( )         
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 ( )       ( ) is one to one on0
  

 
 
 

 
1  * +  

   *     +  *      + 

   0
  

 
 
 

 
1  * +  

 

 

 

Derivative of inverse Trigonometric functions. 

Here we will use implicit differentiation to obtain the 

derivative formula for                 ,       , 

       ,                  . 

 

  
 

  
       

  

√    
         (      )  

  
 

  
       

   

√    
         (      )  
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| |√    
         | |     

  
 

  
       

   

| |√    
         | |     

Example: 

     
  

  
  for the function        ( )         

Solution: 

      
 

  
       

  

√    
         (      )  

 
  

  
       

 

√    
 

Example: 

     
  

  
  for the function         

          

Solution: 

By    
 

  
       

  

√    
                 

 
  

  
         

     

√  (   ) 
 

Example: 
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Solution: 

    
 

  
       

   

√    
 

 

  
          

          

√  (    ) 
 

Example: 

     
  

  
    if         .

 

 
/         

Solution: 

  

  
     (

 

 
)  

 

√  .
 
 /

 
(

 

  
) 

Example: 

     
  

  
    if                      

Solution: 

By:   
 

  
       

  

     

  

  
          

          

  (    ) 
 

 Example: 

     
  

  
    if         (   )         
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Solution: 

By:   
 

  
       

   

     

  

  
     (   )  

  

  (   ) 
 

Example: 

     
  

  
    if                              

Solution: 

By:   
 

  
       

   

     

  

  
                          (     )       

   

  (  )    

Example: 

     
  

  
    if         (     )     

Solution: 

By:    
 

  
       

  

| |√    
         | |     

  

  
     (     )  

(    )        

|     |√(     )   
     

Example: 

     
  

  
    if         (    )         

Solution: 
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By:    
 

  
       

   

| |√    
         | |     

  

  
     (    )  

         

|    |√(    )   
 

Example: 

     
  

  
    if       (       )   

Solution: 

  
  

  
   (       )     (       ) 

   

  (  )  

Exercise: 

         .   
 

 
/            

  

  
   

2-     
  

  
    if    ,     (     )-          

3-     
  

  
    if         (         )         

4-     
  

  
    if         ( √    )         

       
  

  
    if       (      

 
)         

       
  

  
    if       (     √ )         

       
  

  
    if       (       )         
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2-Hyperbolic functions 

In this section we will study certain combination of 

            called hyperbolic functions these functions 

which arise in various engineering applications have 

many properties in common with the trigonometric 

functions. 

Definition: 

Hyperbolic sine is        
      

 
 

Hyperbolic cosine is         
      

 
 

Hyperbolic tangent is         
     

     
 

      

       

Hyperbolic cotangent is         
     

     
 

      

       

Hyperbolic secant is        
 

     
 

 

       

Hyperbolic cosecant is        
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Example: 

Find  sinh x if x=0. 

Solution. 

      
      

 
 

      

 
 

   

 
    

Example: 

Find  cosh x if x=0. 

Solution: 

      
      

 
 

      

 
 

   

 
    

Example: 

Find  sinh x if x=2. 

Solution: 

      
      

 
         

Example: 

Find the Hyperbolic secant  where the angle is   

Solution: 

Hyperbolic secant is        
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3-Derivative Hyperbolic functions  

The derivative formulas for Hyperbolic functions can be 

obtain by expressing.  

Theorem. 

  
 

  
           

  

  
 

  
 

  
           

  

  
 

  
 

  
            

  

  
 

  
 

  
             

  

  
 

  
 

  
                   

   

  
 

  
 

  
                 

  

  
 

Remark: 

                 

Example: 

Derivative formula tanhx can be obtained by formulas 

for Hyperbolic functions  

Solution. 
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Example: 

Derivative formula cosh    

Solution. 

 

  
                  

Example: 

Derivative formula sinhx can be obtained by expressing 

these functions in terms of    and    . 

Solution. 

 

  
      

 

  
4

      

 
5  

      

 
       

 

Example: 

Derivative formula  coshx can be obtained by expressing 

these functions in terms of    and     

Solution: 
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4

      

 
5  

      

 
       

 

Exercise: 

Derivative formula for       can be obtained by 

expressing these functions in terms of    and     

Exercise: 

Find the derivative formula for the functions. 

             

            

     
     

      
 

 

3-Inverse Hyperbolic functions and their derivative 

The following theorems list the generalized derivative 

formula for the Inverse Hyperbolic functions. 

Theorems. 

  
 

  
        

 

√     

  

  
 

  
 

  
        

 

√    
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          | |     

  
 

  
        

 

    

  

  
          | |     

  
 

  
         

 

 √     

  

  
                 

  
 

  
         

 

| |√     

  

  
                      

 

Example: 

Find the derivative formula for          

Solution: 

   
 

  
        

 

    

  

  
          | |     

 

  
         

  

  (  ) 
      

Example: 

Find the derivative formula for        

 
 

Solution: 

   
 

  
         

 

| |√     
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|
 
 | √  .

 
 /

  
 

 

Example: 

Find the derivative formula for            

Solution: 

   
 

  
        

 

    

  

  
          | |     

 

  
           

     

  (    ) 
 

Exercise: 

Find the derivative formula for the functions. 

          (
 

   
) 
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4-Integration involving inverse trigonometric functions. 

Let F(x) and f(x) be two functions related as  

 

  
 ( )   ( ) 

Then f(x) is called the derivative of F(x) 

f(x) is called an infinite integral of F(x) and denoted by  

 ( )  ∫  ( )    

∫   
  

  
 

    

   
   

Remark: 

 

  
               ∫            

But 

 

  
(    )          ∫           

C is called a constant of integration. 

Example: 

    ∫
 

 
     

Solution. 

∫
 

 
     

 

 
∫      
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Example: 

    ∫
 

 
      

Solution. 

∫
 

 
      

 

 
∫       

   

   
   

Example: 

    ∫(
 

   
   )   

Solution. 

∫(
 

   
   )   ∫

 

   
   ∫      

                                ∫
   

 
   ∫      

                                
 

 
∫       ∫      

                              
   

   
      

Example: 

    ∫(     )    

Solution. 
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∫(     )    ∫ (        )   

                                
  

 
 

   

 
      

Example: 

    ∫(     )            

Solution. 

∫(     )            
(     ) 

 
   

5- Trigonometric Integrals  

We will discuss methods for integrating other kinds of 

integrals that involve Trigonometric Integrals.  

Theorems: 

  ∫     
  

  
           

  ∫      
  

  
          

  ∫      
  

  
          

  ∫      
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  ∫          
  

  
          

  ∫          
  

  
           

Example: 

 Evaluate  ∫    
 

 
    

Solution: 

∫    
 

 
    

 ∫
 

 
   

 

 
         

 

 
    

Example: 

 Evaluate    ∫      
      

   

Solution. 

 

 
∫       

       
   

 

 
      

   

Exercise: 

Find the integral formula for the functions. 

  ∫   
 

  
                

  ∫                   
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Integration involving Exponential 

∫            

Example: 

    ∫            

Solution. 

∫                  

Example: 

    ∫                 

Solution. 

 ∫        (     )            

 

Exercise: 

Find the integral formula for the functions. 

  ∫    
         

  ∫  (     ) 
    (     ) (     )   
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Integration involving logarithm 

∫
 

 
     | |     

Example: 

    ∫
  

     
       

Solution. 

 

 
∫

   

     
     

 

 
  |     |    

Example: 

    ∫            

Solution. 

∫           ∫
     

    
          |    |    

Example: 

    ∫                

Solution. 

    ∫                    ∫                    

Example: 
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    ∫       
       

Solution. 

∫       
       ∫       

   

  
   

Example: 

    ∫
   

(     ) 
     

Solution. 

∫
   

(     ) 
     ∫     (     )      

(     )  

  
 

Exercise: 

Find the integral formula for the functions. 

  ∫
    

     
     

  ∫
  

  
   

  ∫     

Integration inverse trigonometric functions. 

We will derive some related integration formulas that 

involve Inverse Trigonometric functions. 

Theorem. 
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  ∫
  

√    
          

  ∫
   

√    
          

  ∫
  

    
          

      ∫
   

    
          

  ∫
  

 √    
      | |    

  ∫
   

 √    
          

 

 

 

Example: 

Evaluate ∫
  

       

Solution. 

   ∫
  

    
          

substituting 
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∫
  

      
 

 

 
∫

   

  (  ) 
 

 

 
     (  )    

Example: 

Evaluate ∫
  

 √      
 

Solution. 

   ∫
  

 √    
      | |    

substituting 

              

       

∫
  

 √      
 

 

 
∫

   

 √(  )   
 

 

 
     (  )    

Example: 

Evaluate ∫
    

       

Solution. 

   ∫
  

    
          

substituting 

  √      √      
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∫
   

     
 

 

√ 
∫

 √   

  (√  )
  

 

√ 
     √     

Example: 

Evaluate ∫
    

√     
 

Solution. 

  ∫
  

√    
          

substituting 

               

       

∫
    

√     
 ∫

    

√  (  ) 
      (  )     

Exercise: 

Find the integral formula for the functions. 

  ∫
     

√       
   

  ∫
  

√  .
 
 

 /
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  ∫

 
 

      
   

      ∫
  

  
 

   
 
 

   

  ∫
 

  √    
   

  ∫
  

  √     
   

 

 

Integration by parts 

In this section we will discuss an integration technique 

that is essentially an anti derivative formulation of the 

formula for differentiating a product of two functions. 

Definition: 

The integration     is the product of the algebraic u 

function.  

∫         ∫     

Where. 
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∫      

Example:  

Evaluate ∫        . 

Solution. 

               

          ∫    ∫           

    ∫         ∫     

∫            ∫       

∫                  

Example:   

Evaluate ∫          . 

Solution. 

               

             ∫    ∫                

    ∫          ∫     

∫                ∫           
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∫                        

Example:  

Evaluate ∫          . 

Solution. 

                

            ∫    ∫                

By: ∫         ∫     

∫                   ∫                        

∫              

               

            ∫    ∫               

Now: 

∫                ∫     

∫                     ∫        

∫                            

By  * 
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∫                  ∫                      

∫                  (                ) 

∫                                 

Example:  

Evaluate ∫       . 

Solution. 

            
 

 
   

        ∫    ∫        

By: ∫         ∫     

∫             ∫  
 

 
   

∫             ∫    

∫                 

Example: 

Evaluate ∫          . 

Solution. 
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             ∫    ∫                 

By: ∫         ∫     

∫                  ∫           

∫                    |    |     

Exercise: 

  ∫        

  ∫         

  ∫          

 

6-Trigonometric substitution 

In this section we will discuss a method for evaluating  

integrals containing radicals by making substitutions 

involving Trigonometric functions. 

Case one: 

We will connected with integrals that contain 

expressions of the form 

√      

In which   is a positive constant  



 The Calculus in Renewable Energy Department                     
Dr. Thamer  AL-khafaji 

 

41 
 

                  
 ⁄     

 ⁄  

Which yields 

√      √           √  (       ) 

              

 √       |    |           

                              
 ⁄     

 ⁄  

Example (*):  

        ∫
  

  √    
 

Solution. 

To eliminate the radical we make the substitution 

              
 

 
 

                                          

This yields  

∫
  

  √    
  ∫

        

(      ) √  (      ) 
 

∫
        

(      ) (     )
 ∫

  

(      ) 
 

 

 
∫

  

     
 

 

 
∫          

 

 
                   ( ) 
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At this point we have completed the integration. 

     
√    

 
 

Substituting this in (1) yields  

∫
  

  √    
  

 

 

√    

 
    

 

 

Example:  

        ∫
  

  √    

√ 

 

 

Solution. 

We can use the result in example (*) with the x-limit of 

integration yields. 
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∫
  

  √    

√ 

 

  
 

 
6
√    

 
7
 

√ 

 
√   

 
 

Case two: 

We will connected with integrals that contain 

expressions of the form 

√      

In which   is a positive constant  

                   
 ⁄     

 ⁄  

                                            

Example:  

             ∫ √    

 
 

 

   

Solution. 

We can use the case two. 

                                          

  ∫ √    

 
 

 

   ∫ √       

 
 

 

            

∫ √     

 
 

 

           ∫      
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∫

 
 

 

         [
 

 
         

 

 
  |         |]

 

 
 
 

 

 
[√     (√   )]        

Remark: 

  ∫         
           

   
 

   

   
∫           

  ∫          |         |    

Case three: 

We will connected with integrals that contain 

expressions of the form 

√      

In which   is a positive constant  

                     
 ⁄  

                                               

Example:  

           ∫
√     

 
      

Solution. 

We can use the case three. 
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∫
√     

 
   ∫

√          

     
              

∫
 |    |

     
              

 ∫         

 ∫(       )              

6-Integrating rational functions by partial fractions 

In this section we will give a general method for 

integrating rational functions that is  based on the idea of 

decomposing a rational function into a sum of simple 

rational functions tat can be integrated by the methods 

studied in earlier sections. 

Linear factor rule. 

  
 

( ) 
 

 

 
 

 

  
 

  
 

( ) 
 

 

 
 

 

  
 

 

  
 

  
 

      
 

 

   (    )
 

                       
 

   (   )(   )
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Example: 

 Evaluate  

∫
   

       
   

Solution. 

   

       
 

   

(   )(   )
 

 

   
 

 

   
 

Multiply both side by the denominator (   )(   ) 

     (   )   (   )             ( ) 

Let       ,   -  

By substitute  in (1) 

   ( )   ( )  ,   - 

Let       ,   -  

By substitute  in (1) 

   (  )   ( )  ,    - 

Now 

∫
   

       
   ∫

 

   
   ∫

 

   
   

∫
   

       
     ∫

 

   
    ∫
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∫
   

       
       |   |     |   |     

 

Example:  

Evaluate∫
  

(   )(   )     

Solution: 

  

(   )(   ) 
 

 

   
 

 

   
 

 

(   ) 
 

Multiply both side by the denominator 

 (   )(   )(   )  

    (   )   (   )(   )   (   )   ( ) 

Let            

By substitute  in (1) 

   ( )   ( )   ( )  [  
 

 
]         

Let             

By substitute  in (1) 

   ( )   ( )   ( )  [  
 

 
]       

Now: By equation (1) and (2) we rusult 

1=A+B 
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(   )(   ) 
 

 

   
 

 

   
 

 

(   ) 
 

 

  

(   )(   ) 
 

 

 

 

   
 

 

 

 

   
 

 

 

 

(   ) 
 

 

∫
  

(   )(   ) 
   

 

 
∫

 

   
   

 

 
∫

 

   
   

 

 
∫

 

(   ) 
   

 

∫
  

(   )(   ) 
   

 

 
  |   |  

 

 
  |   |  

 

 

 

(   )
   

 

Example:  

        ∫
    

(   ) 
   

Solution: 

    

(   ) 
 

 

(   )
 

 

(   ) 
 

 

(   ) 
 

Multiply both side by the denominator by 

(   )  (   )   (   )  

      (   )   (   )             ( ) 
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Let             

By substitute  in (1) 

   ( )   ( )                      

∫
    

(   ) 
   ∫

   

(   )
 ∫

   

(   ) 
 ∫

   

(   ) 
 

∫
    

(   ) 
   ∫

  

(   )
 ∫

  

(   ) 
 ∫

   

(   ) 
 

 

Example: 

Evaluate 

∫
   

      
   

Solution. 

   

      
 

   

   (    )
 

                       
   

   (   )(   )
 

 

  
 

 

   
 

 

   
 

Multiply both side by the denominator by 

   (   )(   ) 

     (   )(   )     (   )     (   )     

Let      By substitute  in (*)     
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Let                             ( )     
  

  
 

Let                              ( )    
 

  
 

∫
   

      
   ∫

 

  
   ∫

 

   
   ∫

 

   
   

 

∫
   

      
    

 

 
∫

 

  
   

  

  
∫

 

   
   

 

  
∫

 

   
   

 

∫
   

      
    

 

 
  |  |  

  

  
  |   |  

 

  
  |   |    

Type of improper integrals and method of evaluation 

In this section we will extend the concept of a define 

integral to include infinite interval of integration and 

integrands that become infinite within the interval of 

integration. 

Type of improper integrals: 

  ∫
 

   

 

 

                          

  ∫
 

   

 

  

                           

  ∫
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  ∫
 

   

 

 

                           

  ∫
 

 

 

 

                           

Information 

       

                    

        

                    

     

      

        
 

 
 

         
 

 
 

Case (1):  [a,+ ) 

∫  ( )  
  

 

    
   

∫  ( )  
 

 

   

     
   

  {
                                           

                             
 

Example: 
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     ∫
 

 

 

 

        

Solution: 

∫
 

 

 

 

         
   

∫
 

 
  

 

 

    
   

0  | |
 

 
1 

      
   

    ,  | |    | |-       ,
   

  | |   - 

    
   

  | |    | |             

Example: 

∫     
 

 

        

Solution: 

∫     
 

 

         
   

∫       
 

 

      
   

(
    

  
|
 

 

) 

    
   

6
    

  
 

 

 
7  

    

  
 

 

 
   

 

 
 

 

 
           

 

Remark: 

            

Case (2): (-    ) 

∫  ( )  
 

  

 ∫  ( )   ∫  ( )  
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∫  ( )      
    

∫  ( )  
 

 

 

 

 

Hence notes: 

                              

                               

Example: 

    ∫
 

    

  

  

        

Solution: 

∫
 

    

  

  

     ∫
 

    

 

  

    ∫
 

    

  

 

         

  ∫
 

    

 

  

   

    
    

∫
 

    

 

 

   

    
    

(      | 
 )  

    
    

,       -  

       (  )  
 

 
 

  ∫
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∫
 

    

 

 

   

    
    

(      | 
 )  

    
    

,             -  

    
    

,      -       (  )  
 

 
 

∫
 

    

  

  

     ∫
 

    

 

  

    ∫
 

    

  

 

         

∫
 

    

  

  

   
 

 
 

 

 
   

Case (3):[a,  ] 

If f is continuous on the interval [a,b], except for an 

infinite discontinuity at b, then the improper integral of f 

over the interval [a,b],is defined as. 

 ∫  ( )  
 

 
        ∫  ( )  

 

 
   

Example: 

∫
 

√   
  

 

 

 

Solution: 

∫
 

√   
  

 

 

    
   ̅

∫
 

√   
   

 

 

   
   ̅

[  √   ]
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   ̅

,  √   +2]=2 

  Case (4):[  ,b] 

If f is continuous on the interval [a,b], except for an 

infinite discontinuity at a, then the improper integral of f 

over the interval [a,b],is defined as. 

∫  ( )  
 

 

    
    

∫  ( )  
 

 

   

Example: 

      ∫
 

   
  

 

 

 

Solution: 

∫
 

   
  

 

 

    
    

∫
 

   
  

 

 

 

    
    

,  |   |- 
  

    
    

,   |  |    |   |- 

    
    

  |   |    | |     

Example: 

∫      
 

 

 

Solution: 
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∫           
    

 

 

∫       
 

 

 

   
    

(      ) | 
  

    
    

,(     )  (      )- 

    
    

,(   )  (      )- 

 ,(  )  ( )- 

 (                )          

Example: 

∫
 

(   ) 
  

 

 

 

Solution: 

∫
 

(   ) 
   

 

 

∫
 

(   ) 
   ∫

 

(   ) 
  

 

 

 

 

 

∫
 

(   ) 
   ∫(   )     

  

   
 

   
    

∫
 

(   ) 
  

 

 

    
    

∫
 

(   ) 
  

 

 

 

   
    

  

   
| 
     

    

  

   
| 
  

   
    

(
  

   
 

  

   
)     

    
(

  

   
 

  

   
) 
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.
  

   
  /     

    
.   

  

   
/ 

                        

Exercise: 

       ∫
 

  

 

 

        

      ∫
 

   
  

 

 

 

      ∫
 

(   )
 

 ⁄
  

 

 

 

      ∫
 

√ (   )
  

  

 

 

      ∫
 

(   ) 
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Sequences and their limit, monotone sequences 
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Sequences and their limit: 
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Definition: 

A sequences is a function whose domain is a set of 

positive integers. Specifically, 

 we will regard the expression *  +   
    be an alternative 

notion for the function  ( )                    

There are two types of sequence  

1-The first type is finite sequence  

2-The second type is infinite sequence. 

Example: 

   *     +                              

   *        +                         

Example: 

Find the three terms of the sequence. 

   
  

    
 

Solution: 

        
  

    
 

 ( )

  ( ) 
 

 

 
   

        
  

    
 

 ( )

  ( ) 
 

  

 
 

 

 
 

        
  

    
 

 ( )

  ( ) 
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The three terms of the sequence are  
 

 
 
  

  
 

Example: 

Find the four terms of the sequence. 

      .
  

 
/ 

Solution: 

           .
  

 
/     .

 

 
/     

           .
  

 
/     (

  

 
)      

           .
  

 
/     (

  

 
)     

           .
  

 
/     (

  

 
)     

The four terms of the sequence are 0,-1,0,1 

 

 

 

 

 

Example: 

Find the four terms of the sequence. 
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   (  )      .
  

 
/ 

Solution: 

        (  )      .
  

 
/     .

 

 
/  

     

     
 

                                                                   
 

 
    

        (  )      .
  

 
/      (

  

 
)     

        (  )      .
  

 
/     (

  

 
)     

        (  )      .
  

 
/      (

  

 
)     

The four terms of the sequence are  ,0,  ,0 

 

Example: 

Find the limit of the sequence 2
 

    
3

   

  
 

Solution: 

   
    

 

    
    

    

 
 

  
  

 
 

    
    

 

  
 
 

 
 

  
 
 

 

 
 

   
 

 

 
 



 The Calculus in Renewable Energy Department                     
Dr. Thamer  AL-khafaji 

 

63 
 

Exercise: 

1-Find the limit of the sequence    
    

√ 
 

 

2-Find the four terms of the sequence. 

      .
  

 
/ 

3- Find the limit of the sequence 2
 

  3
   

  
 

4- Find the limit of the sequence 2
  

  
3

   

  
 

Remark: 

  )           

  )           

  )       

  ) 
 

 
   

Example: 

Determine whether the sequence converge or diverges. 

   
   

   
 

 
   .

 

 
/ 

Solution: 

      .
 

 
/    
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    .

 

 
/  

 

 
 

     
   

     
  

 
 

  

 
   

     
   

     
 

 
 

 

 
   

   
   

   
 

 
   .

 

 
/                  

Example: 

Determine whether the sequence converge or diverges. 

   
   

   
     

  √ 
 

Solution: 

           

  

  √ 
 

     

  √ 
 

 

  √ 
 

     
   

     
  

  √ 
 

  

 
   

     
   

     
 

  √ 
 

 

 
   

   
   

   
     

  √ 
                 

monotone sequences: 
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In this section we will study several techniques that can 

be used to determine whether a sequences converges. 

Definition: 

A sequence *  +   
   is called 

                                              

                                     

                                          

                                

Example: 

Determine the monotone sequence 

    1,1,2,2,3,3…… increasing  

 1,1,
 

 
 
 

 
 
 

 
 
 

 
      decreasing  

 

 
 
 

 
 
 

 
 
 

 
   

 

   
                                 

1,
 

 
 
 

 
   

 

 
                        

   
 

 
 
 

 
  

 

 
 (  )   

 

 
                                 

 

 

9. Infinite series . The comparison 



 The Calculus in Renewable Energy Department                     
Dr. Thamer  AL-khafaji 

 

66 
 

Definition: 

An infinite series is an expression that can be written in 

the form ∑   
 
                      

The numbers         ,… are called the terms of the 

series. 

Definition: 

Let *  +be a sequence of the partial sums of the series  

                  

If the sequence *  +converges to a limit s, then the series 

is said to converges to s, and s is called the sum of the 

series. we denote this by writing  

  ∑   

 

   

 

If the sequence of partial sums diverges, then the  series 

is said to be diverge. A diverge series has no sum. 

Example: 

Determine whether the series ∑ (  )  
    converge or 

diverge. If it converges, find the sum. 

Solution: 
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And so. 

Thus. The sequence of partial sum is  

1,0,1,0,…… 

Since This is diverge sequence, the given series diverges 

and consequently has no sum. 

10. Ratio and Root tests. Alternating series 

 

Definition: 

Let ∑    be a series with positive terms and suppose 

that          
    

  
 

( )                          
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( )                                

( )                                  

Example: 

Test the following series by ratio test. ∑
  

  
 
    

Solution: 

     
   

|

    

(   ) 

  

  

|     
   

|
    

(   ) 
 
  

  
| 

   
   

   

(   ) 
    

   

   

       
  

                      

By: ( )                                

Example: 

Test the following series by ratio test. ∑
 

(    ) 
 
    

Solution: 

---- 

Example: 

Test the following series by ratio test. ∑
 

 
 
    

Solution: 

---- 
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Definition: 

Let ∑    be a series with positive terms and suppose 

that          √  
  

( )                          

( )                                

( )                                  

Example: 

Test the following series by ratio test. ∑    
    

Solution: 

         √  
                        

By: ( )                                

Definition: 

If                                      

                      

              

                                             

Convergent if the following conditional hold: 

( )|     |  |  |     |   |        

( )                                        

 ( )              
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Example: 

Test the following series is converge or diverge  

∑ (  )  

 
 
    

Solution: 

( )  ∑(  ) 
 

 

 

   

    
 

 
 

 

 
 

 

 
   

|  |  |  |    

|  |  | 
 

 
|  

 

 
 

|  |  | 
 

 
|  

 

 
 

     
 

 
 

 

 
  

( )  ( )                   
 

 
         

( )    
    

(  ) 
 

 
    

∑(  ) 
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11. Conditional converges. 

 

Maclaurin series and taylor series. And their 

approximation power series. 
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Definition: 

The Taylor series for   at      is a series of the form. 

 ( )  ∑
  ( )

  
(   )   ( )  

 

   

  ( )(   )

 
   ( )

  
(   )    

  ( )

  
(   )  

Example: 

Find the Taylor series for the function  ( )  

              

Solution: 

 ( )      (  )      

  ( )       (  )      

   ( )        (  )      

 ( )   ( )    ( )(   )  
   ( )

  
(   )   

 
  ( )

  
(   )  

 ( )         (    )  
   

  
(    ) 

 
   

  
(    )    
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 ( )     [(    )  
 

  
(    )  

 

  
(    ) 

  ] 

 ( )     ∑
(    ) 

  

 

   

 

Example: 

Find the Taylor series for the function  ( )  

              

Solution: 

 ( )       ( )    

  ( )  
 

 
   ( )    

   ( )  
  

  
    ( )     

    ( )  
 

  
     ( )    

 ( )   ( )    ( )(   )  
   ( )

  
(   )   

 
  ( )

  
(   )  

 ( )    (   )  
 

  
(   )  

 

  
(   )    



 The Calculus in Renewable Energy Department                     
Dr. Thamer  AL-khafaji 

 

74 
 

 ( )  ∑
(  )   (   ) 

  

 

   

 

Exercise: 

Find the Taylor series for the following functions  

    ( )  
 

 
            

   ( )               
  

 
 

   ( )             
 

 
 

 

Definition: 

The  Maclaurin series for   at      is a series of the 

form. 

 ( )  ∑
  ( )

  
( )   ( )  

 

   

  ( )( )

 
   ( )

  
( )    

  ( )

  
( )  
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Example: 

Find the Maclaurin series for the following  function 

  ( )  (   )
 

  

Solution: 

 ( )  (   )
 
   ( )    

12- Differentiating and integrating power series. 

 

Definition: 

A power series is a series of the form  

∑         

 

   

                  

Or 
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∑   (    )     

 

   

  (    )    (    ) 

     (    )    

Example: 

                                              ∑
  

 

 

   

 

Solution: 

∑
  

 
   

 

   

  

 
 

  

 
                         

Example: 

                                              ∑
  

  

 

   

 

Solution: 

∑
  

  
   

 

   

  

  
 

  

  
                        

Example: 

                                            (   )  

 ∑
(  ) (   ) 

  

 

   

 

Solution: 
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∑
(  ) (   ) 

  
   

 

   

   

 
  

                      (   )  

 

Remark: 

         
  

  
 

  

  
 

  

  
  

         
  

  
 

  

  
 

  

  
  

 Differentiating power series. 

Definition: 

If     ( )  ∑      
         has radius of converges c 

then: 

  ∑                                            

 

   

 

   ( )                     (    )  

    ( )  ∑               (    ) 

 

   

 

Integration  power series. 

Definition: 

If     ( )  ∑      
        has radius of converges c then: 
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  ∑
      

   
                                    

 

   

 

  ∫  ( )                         (    )  

  ∫  ( )   ∑
      

   
             (    ) 

 

   

 

Example: 

Prove that     
 

  
           

Solution: 

       
  

  
 

  

  
 

  

  
  

 

  
        

  

  
 

   

  
 

   

  
  

 

  
       

  

  
 

  

  
 

  

  
           

Exc 

Prove that ∫                          

Example: 

Express ∫                              
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13-polar coordinates. Curves defined by parametric 

equations. 

 

Def 

A polar coordinates system in a plane consists of a fixed 

point o, called the pole (or origin),and a ray emantig 

from the pole. called the polar axis. 

 polar coordinates (    ) which the first number r 
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gives the directed distance from 0 to p. and the second 

number    gives  the directed angle from the initial ray to   

op. 

Example: 

Find the polar coordinates of the point (     )  

Slo 

 (    ) 

 (        ) 

 (         ) 

 (         ) 

Exce: 

Find the polar coordinates of the points 

    (     )  

   (     )   

   (      )   

Example: 

Find all the polar coordinates of the point (     )  

Solution: 

1-when     
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There fore the polar coordinates 

 (           )             

    (           )                

2-when      

                         

                        

                        

  

There fore the polar coordinates 

 (              )             

    (              )                

Thus the polar coordinates are  

(           )                

(              )                



 The Calculus in Renewable Energy Department                     
Dr. Thamer  AL-khafaji 

 

82 
 

 

Remark: 

To find the Cartesian coordinate equivalent to coordinate 

and rice verse, we use the following equation  
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       √      

         
 

 
 

         
 

 
 

Ex 

Find the Cartesian coordinate of the point  (     )  

Sol 

                    
 

 
     

                    
√ 

 
   √  

(   )   (  √ ) 

Ex 

Find the Cartesian coordinate of the point  (     )  

Sol 
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(   )   (   ) 

Exc 

Find the Cartesian coordinate of the points and sketch. 

    (     )  

   (      )  

   .   
 

 
/  

   .   
 

 
/  

 

 

 

 

 

 

 

 

 

14-Tangent line and length for parametric and polar 

curves.  Area in polar coordinates. 
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In this section we will derive the formula required to find 

slopes, tangent lines, and arc lengths of parametric and 

polar curves. 

Def736 

We will be concerned in this section with curves that are 

given by parametric equations  

   ( )          ( )  

In which  ( )    and  ( ) have continuous first derivative 

with respect to t.it can be proved that if    
  ⁄   , then 

y is differentiable function of x, in which case the chain 

rule implies that 

  

  
 

  
  
  
  

 

This formula makes it possible to find 
  

  
 directly from 

the parametric equations without eliminating the 

parameter. 

 

 

 

 

 



 The Calculus in Renewable Energy Department                     
Dr. Thamer  AL-khafaji 

 

86 
 

Ex 

 

Find the slope and tangent line to the unit circle. 

                                   

At the point where    
 ⁄  

Solution: 

           
  

  
 

  
  
  
  

                               ( ) 

The slope at a general point on the circle is  

  

  
 

  
  
  
  

 
     

     
       

Thus, the slope at    
 ⁄  is 
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|   

 ⁄       
 ⁄   √  

Ex 

With out eliminating the parameter. 

Find 
  

  
 and   y/  x at the points (1,1) and (1,-1) on the 

semicubical parabola given by the parametric equations  

                 (       ) 

Sol 

          
  

  
 

  
  
  
  

 
   

  
 

 

 
                                 ( ) 

And from (*) applied to    
  

  
 we have  

   

   
 

   

  
 

   

  
  
  

 

 
 
  

 
 

  
                                        ( ) 

Since the point (1,1) on the curve corresponds to t=1 in 

the parametric equations, it follows from (1) and ( 2) that  

  

  
|    

 

 
            

 

   

   
|    
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Similarly,  the point (1,-1) on the curve corresponds to 

t=-1 in the parametric equations, so applying   (1) and      

( 2) again yields 

  

  
|      

 

 
            

 

   

   
|     

  

 
 

----------------- 

 

 

 

Def 740ca 

If no segment of the polar curve    ( )is traced more 

than once as   increases from   to  and if   
  ⁄ is 

continuous for        then the arc length L from 

           is 

  ∫
 

 

√   (
  

  
)
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Ex 

Find the arc length of the spiral     in Figure between 

    and      

Sol 

  ∫
 

 

√   (
  

  
)
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  ∫
 

 

√(  )  (  )    

  ∫
 

 

√       √    - 
  √ (     )       
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